Время работы асинхронного двигателя

Режимы работы электродвигателей

Возможные режимы работы электроприводов отличаются огромным многообразием по характеру и длительности циклов, значениям нагрузок, условиям охлаждения, соотношения потерь в период пуска и установившегося движения и т.п., поэтому изготовление электродвигателей для каждого из возможных режимов работы электропривода не имеет практического смысла.

На основании анализа реальных режимов выделен специальный класс режимов — номинальные режимы , для которых проектируются и изготавливаются серийные двигатели .

Данные, содержащиеся в паспорте электрической машины , относятся к определенному номинальному режиму и называются номинальными данными электрической машины. Заводы-изготовители гарантируют при работе электродвигателя в номинальном режиме при номинальной нагрузке полное использование его в тепловом отношении.

Различают следующие режимы работы двигателей под нагрузкой в зависимости от ее длительности : продолжительный, кратковременный и повторно-кратковременный.

При продолжительном режиме двигатель работает без перерыва, причем рабочий период настолько велик, что нагрев двигателя достигает установившейся температуры.

Продолжительная нагрузка может быть постоянной или изменяющейся. В первом случае температура не изменяется, во втором — изменяется вместе с изменением нагрузки. С малоизменяющейся нагрузкой в этом режиме работают двигатели конвейеров, лесопильных рам и др., с переменной продолжительной нагрузкой работают двигатели различных металлообрабатывающих и деревообрабатывающих станков.

При кратковременном режиме двигатель не успевает нагреться до установившейся температуры, а в течение паузы охлаждается до температуры окружающей среды. Продолжительность кратковременной работы ГОСТ на электрические машины устанавливает равной 10, 30, 60 и 90 мин.

При повторно-кратковременном режиме двигатель за период работы не успевает нагреться до установившейся температуры, а за время паузы — охладиться до температуры окружающей среды. В этом режиме двигатель действует с непрерывно чередующимися периодами работы под нагрузкой и вхолостую, или паузами.

При повторно-кратковременном режиме двигатель за период работы не успевает нагреться до установившейся температуры, а за время паузы — охладиться до температуры окружающей среды. В этом режиме двигатель действует с непрерывно чередующимися периодами работы под нагрузкой и вхолостую, или паузами.

Продолжительность включения электротехнического изделия (электротехнического устройства, электрооборудования) — отношение времени пребывания во включенном состоянии электротехнического изделия (электротехнического изделия, электрооборудования), работающего в повторно-кратковременном режиме, к длительности цикла (ГОСТ 18311-80).

Повторно-кратковременный режим характеризуется относительной продолжительностью включения ПВ = [tp/(tp + tо)] 100 %, где tp и tо — время работы и паузы при продолжительности цикла ( t ц = t р+ t о) не более 10 мин.

Повторно-кратковременный режим бывает:

с продолжительностью включения ПВ = 1 5, 25, 40 и 60% и продолжительностью цикла 10 мин,

с частыми пусками при ПВ = 15, 25, 40 и 60 % и числом включений в час 30, 60, 120 и 240 при коэффициенте инерции 1,2, 1,6, 2,5 и 4,

с частыми пусками и электроторможением при тех же номинальных ПВ, числе включений и коэффициенте инерции,

перемежающийся с продолжительностью цикла 10 мин при нагрузках ПВ= 15, 25, 40 и 60%,

  • перемежающийся с электроторможением и частыми реверсами, число которых в час составляет 30, 60, 120 и 240 при коэффициенте инерции 1,2, 1,6, 2,5 и 4.
  • Режимы работы электродвигателей по ГОСТ

    Действующим ГОСТ предусматриваются 8 номинальных режимов , которые в соответствии с международной классификацией имеют условные обозначения S1 — S8.

    Продолжительный режим работы S1 — работа машины при неизменной нагрузке достаточно длительное время для достижения неизменной температуры всех ее частей.

    Продолжительный режим работы электродвигателя S1

    Кратковременный режим работы S2 — работа машины при неизменной нагрузке в течение времени, недостаточного для достижения всеми частями машины установившейся температуры, после чего следует остановка машины на время, достаточное для охлаждения машины до температуры, не более чем на 2°С превышающей температуру окружающей среды.

    Для кратковременного режима работы нормируется продолжительность рабочего периода 15, 30, 60, 90 мин.

    Кратковременный режим работы электродвигателя S2

    Повторно-кратковременный режим работы S3 — последовательность идентичных циклов работы, каждый из которых включает время работы при неизменной нагрузке, за которое машина не нагревается до установившейся температуры, и время стоянки, за которое машина не охлаждается до температуры окружающей среды.

    В этом режиме цикл работы таков, что пусковой ток не оказывает заметного влияния на превышение температуры. Продолжительность цикла недостаточна для достижения теплового равновесия и не превышает 10 мин. Режим характеризуется величиной продолжительности включения в процентах:

    Читайте также:  Диапазон оборотов двигателя ваз

    ПВ = (t р / ( t р + t п)) х 100%

    Повторно-кратковременный режим работы электродвигателя S3

    Нормируемые значения продолжительности включения: 15, 25, 40, 60 %, или относительные значения продолжительности рабочего периода: 0,15; 0,25; 0,40; 0,60.

    Для режима S3 номинальные данные соответствуют только определенному значению ПВ и относятся к рабочему периоду.

    Режимы S1 — S3 являются в настоящее время основными, номинальные данные на которые включаются отечественными электромашиностроительными заводами в каталоги и паспорт машины.

    Номинальные режимы S4 — S8 введены для того, чтобы впоследствии упростить задачу эквивалентирования произвольного режима номинальным, расширив номенклатуру последних.

    Повторно-кратковременный режим работы с влиянием пусковых процессов S4 — последовательность идентичных циклов работы, каждый из которых включает время пуска, достаточно длительное для того, чтобы пусковые потери оказывали влияние на температуру частей машины, время работы при постоянной нагрузке, за которое машина не нагревается до установившейся температуры, и время стоянки, за которое машина не охлаждается до температуры окружающей среды.

    Перемежающийся режим работы S6 — последовательность идентичных циклов, каждый из которых включает время работы с постоянной нагрузкой и время работы на холостом ходу, причем длительность этих периодов такова, что температура машины не достигает установившегося значения.

    Перемежающийся режим работы S6: to — время холостого хода

    Перемежающийся режим с влиянием пусковых процессов и электрическим торможением S7 — последовательность идентичных циклов, каждый из которых включает достаточно длительный пуск, работу с постоянной нагрузкой и быстрое электрическое торможение. Режим не содержит пауз.

    Перемежающийся режим работы с влиянием пусковых процессов и электрическим торможением S7

    Перемежающийся режим с периодически изменяющейся частотой вращения S8 — последовательность идентичных циклов, каждый из которых включает время работы с неизменной нагрузкой и неизменной частотой вращения, затем следует один или несколько периодов при других постоянных нагрузках, каждой из которых соответствует своя частота вращения (например, этот режим реализуется при переключении числа пар полюсов асинхронного двигателя). Режим не содержит пауз.

    Перемежающийся режим работы с периодически изменяющейся частотой вращения S8

    Учет режима работы имеет большое значение при подборе двигателя. Мощности двигателей, указанные в каталогах, приведены для режима S1 и нормальных условий работы, кроме двигателей с повышенным скольжением.

    Если двигатель работает в режиме S2 или S3, он нагревается меньше, чем в режиме S1, и поэтому он допускает большую мощность на валу.

    При работе в режиме S2 допустимая мощность может быть повышена на 50 % при длительности нагружения 10 мин, на 25 % — при длительности нагружения 30 мин, на 10% — при длительности нагружения 90 мин.

    Источник

    Асинхронный двигатель — что это такое, как устроен и где используется?

    Сегодня есть множество типов электрических двигателей: коллекторные двигатели постоянного тока и универсальные, двигатели переменного тока синхронные и асинхронные, бесщеточные двигатели постоянного тока и синхронные двигатели с постоянными магнитами, шаговые двигатели и сервоприводы и т.д. Но самым распространенным на производстве был, есть и будет – асинхронный электродвигатель с короткозамкнутым ротором. В этой статье мы поговорим о том, что это такое и в чем заключаются его особенности.

    Определение и немного истории

    Автором асинхронного двигателя считают Михаила Осиповича Доливо-Добровольского, который в 1889 году получил патент на двигатель с ротором типа «Беличья клетка», а в 1890 году на двигатель с фазным ротором, которые без особых изменений в конструкции используются и сегодня. А первые исследования и наработки в этом направлении были проведены в 1888 Галилео Феррарисом и Николой Тесла независимо друг от друга.

    Главным отличием разработки Доливо-Добровольского от разработок Теслы было использование трёхфазной, а не двухфазной конструкции статора. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. Там представили три трёхфазных асинхронных электродвигателя, самый мощный из которых был на 1.5 кВт. Конструкция этих машин оказалась настолько удачно, что не пережила весомых изменений до наших дней.

    Определение асинхронной машины звучит следующим образом:

    Асинхронной называется электрическая машина переменного тока, в которой частота вращения ротора не равна частоте вращения магнитного поля, создаваемого обмотками статора.

    Принцип работы

    В любом электродвигателе ротор приводится во вращение в результате взаимодействия магнитных полей ротора и статора и работы силы Ампера. Для создания магнитного поля используются либо постоянные магниты, либо электромагниты — обмотки статора и ротора. Одну из обмоток (ротора или статора) называют обмоткой возбуждения, вторую обмотку называют обмоткой якоря. Асинхронный двигатель отличается от других типов электромашин тем, что у него нет выраженной обмотки возбуждения, отсюда возникает вопрос «если нет обмотки возбуждения, то как создаётся магнитное поле?», если опустить некоторые особенности, то ответ на этот вопрос достаточно простой — асинхронный двигатель почти как трансформатор.

    Читайте также:  Повышенные обороты двигателя зил

    Напряжение от сети подключают к обмоткам статора. В них протекает электрический ток, в результате чего возникает магнитное поле статора. Так как сеть трёхфазная, фазы токов и напряжений каждой из фаз сдвинуты друг относительно друга на 120˚. Сила тока изменяется по синусоидальному закону и ток протекает то в одной, то в другой обмотке. Из-за этого магнитное поле получается вращающимся, что наглядно иллюстрирует ЭТО ВИДЕО

    Магнитное поле статора индуцирует ЭДС в обмотках ротора (хоть короткозамкнутого, хоть фазного, о конструкции и видах мы поговорим дальше). Так как обмотки ротора закорочены или подключены к сопротивлениям — в них начинает протекать электрический ток, из-за которого возникает еще одно магнитное поле, которое, взаимодействуя с полем статора, приводит во вращение ротор.

    Скорость вращения поля статора называют «синхронной», а скорость вращения ротора «асинхронной», из-за такой особенности этот тип электромашин и получил своё название. Ротор всегда немного отстает от поля статора, разность этих скоростей называют «скольжением». Скорость вращения (оборотов в минуту) поля статора зависит от частоты тока в питающей сети и числа его полюсов, если проще — от количества катушек в обмотке, и вычисляется по формуле:

    где f – частота напряжения питающей сети, р – число пар полюсов, 60 – секунд в минуте

    Синхронная скорость двигателя с одной парой полюсов равна: 60*50/1=3000 оборотов в минуту. Но асинхронная скорость или скорость вращения ротора будет несколько ниже, как отмечалось ранее. Обычно она находится в районе 2700-2950 об/мин, а скольжение лежит в пределах 2-8% (зависит от типа электродвигателя, его мощности и нагрузки на валу). Скольжение измеряется в относительных величинах или в процентах, и рассчитывается по формуле:

    где n1 — синхронная скорость вращения, n2 — скорость вращения ротора.

    Конструкция

    Конструкция асинхронного двигателя, пожалуй, самая простая среди его аналогов. Он состоит из ротора и статора. Зачастую на статоре расположена трёхфазная обмотка, исключение составляют двигатели, предназначенные для работы в однофазной сети с двухфазной обмоткой или с рабочей и пусковой обмоткой. Статор состоит из металлического корпуса и сердечника с обмотками (собственно их называют обмоткой статора).

    Так как двигатель питается переменным током, возникает проблема, связанная с потерями на блуждающие токи (т.н. токи Фуко), для этого сердечник статора набирают из тонких пластин. Стальные пластины для предотвращения контакта друг с другом изолируются окалиной, скрепляются лаком. Ток, протекающий в обмотках статора, называют током статора.

    Корпус статора закрывается с двух сторон подшипниковыми щитами, в них, соответственно, устанавливаются подшипники скольжения или качения, в зависимости от мощности и размеров машины. Подшипники закрываются крышками, это нужно для их смазки, обычно используют пластичную смазку, как литол, солидол и подобные.

    Реже, в больших и мощных электрических машинах могут использоваться опорные подшипники скольжения с циркуляционной системой смазки (жидкостная смазка). В них маслонасос закачивает масло, в рабочем режиме ротор таких машин скользит по тонкой масляной плёнке, подобно тому, как это происходит во вкладышах на ДВС.

    По конструкции корпуса и типу крепления различают двигатели на лампах или с фланцевым креплением, также бывают с комбинированным типом крепления — с лапами и фланцем.

    В зависимости от типа двигателя вал из него может выходить как с одной, так и с обеих сторон. К нему присоединяется исполнительный механизм, для этого конец выполняется конической или цилиндрической формы или с проточкой для установки шпонки и соединения с исполнительным механизмом.

    В большинстве электродвигателей используется принудительное воздушное охлаждения. Для этого на корпусе продольно располагаются рёбра, а на другом конце вала устанавливается крыльчатка вентилятора охлаждения. Во время работы двигателя она вращается и прогоняет воздух вдоль рёбер, забирая тепло от статора.

    Короткозамкнутый и фазный ротор

    Различают два типа асинхронных двигателей — с короткозамкнутым и с фазным ротором.

    Короткозамкнутый ротор или ротор типа «Беличья клетка» представляет собой набор медных или алюминиевых стержней (2) соединенных (замкнутых) между собой кольцом (3). Стержни впаиваются или заливаются в сердечник (1). Беличьей клеткой его называют из-за внешней схожести, что вы и можете наблюдать в левой части следующей иллюстрации.

    Фазный ротор отличается конструкцией, на нём расположена полноценная трёхфазная обмотка, зачастую её катушки соединены по схеме «звезды», то есть их концы соединяются в одной точке, а начала катушек соединяются с токопроводящими кольцами. С помощью щеточного узла образуется скользящий контакт с кольцами. Он, в свою очередь, состоит из щёток и щеткодержателей.

    Читайте также:  Подтраивает двигатель на холостых нексия 8кл

    Фазный ротор используют для плавного пуска или регулировки момента на валу посредством изменения величины скольжения двигателя за счет изменения активного сопротивления обмотки ротора. Для этого к выводам щеток подсоединяется регулировочный реостат или набор мощных резисторов (для ступенчатой регулировки). Если сказать кратко, то в двигателе с фазным ротором на обмотку ротора не подают ток, как в синхронном двигателе, например, а, наоборот, к ним подключают сопротивления в качестве нагрузки.

    Такие двигатели зачастую используются в грузоподъемных механизмах — кранах или лифтах. Двигатели с короткозамкнутым ротором используются везде: в вентиляции, в станках, и в грузоподъёмных механизмах, для привода насосов и задвижек и т.д.

    Схема соединения обмоток статора

    Так как в статоре односкоростного асинхронного двигателя расположено три обмотки, то для подключения к трёхфазной сети их необходимо как-то соединить. Как и в любой трёхфазной цепи различают две схемы соединения:

    1. «Звезда». Концы обмоток соединяются вместе, напряжение подводится к их началам.

    2. «Треугольник». Начало следующей обмотки соединяется с концом предыдущей.

    Концы обмоток выводятся в клеммную коробку, которую еще называют «брно» или «борно» (мне не удалось найти правильного названия, а в словаре указаны оба варианта). В зависимости от типа и конструкции двигателя в «борно» может быть выведено 3 или 6 проводов. Если выведено 3 провода – то обмотки соединены «с завода» по определенной схеме, а если 6, то вы можете выбрать схему подключения исходя из напряжения питающей сети.

    В зависимости от года производства и производителя электродвигателя могут применяться такие обозначения выводов обмоток, как приведены в таблице ниже.

    Концы обмоток на клеммнике расположены таким образом, чтобы с помощью одного комплекта из трёх перемычек можно было соединить обмотки по нужной схеме. Для соединения по схеме звезды перемычки устанавливают в ряд на концы обмоток, а для треугольника – параллельно друг другу соединяя «верхние» и «нижние» клеммы. Для этого начала и концы обмоток смещены друг относительно друга, что вы увидите на следующей иллюстрации.

    Напряжение и схема подключения

    Как отмечалось выше, схему соединения обмоток выбирают исходя из доступного линейного напряжения в трёхфазной сети. Наиболее распространенное напряжение в РФ это 380/220. Допустим, что у нас есть двигатель, шильдик которого выглядит, как показано на фотографии:

    Здесь мы видим обозначение «треугольник/звезда» и напряжения «220/380В» — это значит, что если линейное напряжение в сети 380 – использовать «звезду», как зачастую и делают. Но если линейное напряжение в трёхфазной сети равно 220В, то нужно подключать этот двигатель по схеме «треугольник» (такое встречается и сегодня на старых предприятиях или отдельных участках электросети с напряжениями 220/127 вольт).

    Также на эти цифры обращают внимание, когда двигатель подключают к однофазной сети, хоть через фазосдвигающий конденсатор, хоть через частотный преобразователь с однофазным входом и трёхфазным выходом, всегда выбирают ту схему обмоток, которая рассчитана на подключение к сети 220В.

    Порой попадаются и старые электродвигатели, в которых обмотки рассчитаны на номинальные напряжения 127/220 и они не предназначены для прямого включения в трёхфазную электросеть с линейным напряжением 380В. Их можно подключать только к однофазной сети через конденсатор или частотник, как было отмечено выше, но в этом случае обмотки уже нужно соединять «звездой».

    На предприятиях часто используются мощные электродвигатели, в которых наоборот, схема «треугольник» рассчитана на питание напряжением 380В, а звезда 660В (тогда на шильдике указывается 380/660). Такие двигатели, зачастую, используются, чтобы снизить пусковые токи при пуске, посредством переключения обмоток со схемы «звезда» на схему «треугольник», так как это дешевле, чем использовать частотник или устройства плавного пуска в этих же целях.

    Обращайте внимание на то, что написано на шильдике. Неправильное подключение двигателя опасно его преждевременной смертью.

    Заключение

    Асинхронные двигатели нашли широчайшее применение практически во всех сферах жизнедеятельности человека. Такая популярность обусловлена простотой конструкции и, как следствие, долгим сроком службы. В асинхронном двигателе с короткозамкнутым ротором обслуживания требуют только подшипники. При надлежащей эксплуатации в номинальных для конкретной серии режимах работы, а также соблюдении требований по климатическим условиям и условиям окружающей среды — эти двигатели служат десятилетиями.

    Источник

    Adblock
    detector