Впускная система двигателя принцип работы

Впускная или система впуска двигателя внутреннего сгорания — для чего нужна и как работает

В процессе развития двигателя внутреннего сгорания появилась впускная система. Система впуска современного двигателя необходима для подвода воздуха к цилиндрам и образования там рабочей смеси.

Впускная система состоит из: воздухозаборника, воздушного фильтра, дроссельной заслонки, впускного коллектора. Ещё в системе присутствуют: соединительные патрубки и на некоторых двигателях — впускные заслонки.

Устройство впускной системы на примере двигателя К4М:
1 — воздухозаборный патрубок; 2 — глушители шума впуска; 3 — корпус воздушного фильтра; 4 — блок дроссельной заслонки; 5 — впускной коллектор; 6 — подкладка корпусов форсунок; 7 — забор воздуха.

Воздухозаборник — нужен для забора воздуха и подачи его к двигателю. Процесс забора происходит благодаря давлению, которое создается потоком встречного воздуха или благодаря разрежению, которое создается движением поршней в цилиндрах.

Воздушный фильтр выполняет роль очистителя поступающего воздуха от всяческих частиц. Сам элемент фильтра изготовляется из спецбумаги и имеет определенный срок службы. Воздушные фильтры могут иметь разную конструкцию — бывают цилиндрические, панельные, бескаркасные.

Дроссельная заслонка увеличивает или уменьшает подачу воздуха, в зависимости от величины поступающего топлива. Приводится в действие педалью газа, а на современных моторах работает с помощью электродвигателя.

Впускные заслонки имеют место быть на движках с непосредственным впрыском топлива. Они крепятся на одном валу, который приводится в движение электрическим или вакуумным приводом.

Впускной коллектор выполняет роль распределителя воздуха по цилиндрам двигателя.

Как работает система впуска

Система работает по причине разного давления между атмосферным и давлением в цилиндрах двигателя, которое возникает на такте впуска. Объем цилиндра и поступающего воздуха пропорционален. Дроссельная заслонка регулирует величину воздуха, необходимую для конкретного режима работы мотора.

Как работает система впуска:
A — поток воздуха; B — поток отработавших газов; 1 — дроссельная заслонка (только на бензиновых двигателях); 2 — клапан рециркуляции отработавших газов; 3 — поступающие по системе рециркуляции отработавшие газы; 4 — воздух или топливо-воздушная смесь; 5 — впускной клапан.

На двигателях, где установлены впускные заслонки, может быть несколько видов смесеобразования — это послойное, стехиометрическое гомогенное и бедное гомогенное.

Смесеобразование послойное — дроссельная заслонка в основном полностью открыта, а заслонки впускные закрыты. Рабочая смесь на этом режиме бедная, она применяется при работе двигателя на средних и малых оборотах и при нагрузках.

Стехиометрическое гомогенное смесеобразование — заслонки впускные открыты, а дроссельная заслонка открыта от требуемого крутящего момента. Это смесеобразование применяется при больших нагрузках и высоких оборотах двигателя.

Смесеобразование бедное гомогенное — заслонки впускные закрыты, дроссельная заслонка открыта, а режим работы двигателя, так называемый промежуточный.

Источник

Впускная система

Впускная система (другое наименование – система впуска) предназначена для впуска в двигатель необходимого количества воздуха и образования топливно-воздушной смеси. Термин «впускная система» появился с развитием конструкции двигателей внутреннего сгорания, особенно с появлением системы непосредственного впрыска топлива. Оборудование для питания двигателя воздухом перестало быть просто воздуховодом, а превратилось в отдельную систему.

В своей работе система впуска взаимодействует со многими системами двигателя, в том числе с системой впрыска, системой рециркуляции отработавших газов, системой улавливания паров бензина, вакуумным усилителем тормозов. Взаимодействие перечисленных систем и еще ряда других систем обеспечивает система управления двигателем.

Для улучшения наполнения цилиндров воздухом, повышения мощности в конструкции системы впуска современных бензиновых и дизелных двигателей используется турбонаддув.

Читайте также:  Схема сборки вечного двигателя

Конструкция впускной системы включает воздухозаборник, воздушный фильтр, дроссельную заслонку, впускной коллектор. на отдельных конструкциях двигателей используются впускные заслонки. Все элементы впускной системы соединены патрубками.

Воздухозаборник обеспечивает забор воздуха из атмосферы и представляет собой патрубок определенной формы.

Воздушный фильтр служит для очистки воздуха от механических частиц. Фильтрующий элемент изготавливается из специальной бумаги и размещается в отдельном корпусе. Фильтрующий элемент воздушного фильтра является расходным материалом, т.е. имеет ограниченный срок службы. В зависимости от условий эксплуатации автомобиля срок службы фильтрующего элемента может изменяться.

Дроссельная заслонка регулирует величину поступающего воздуха в соответствии с величиной впрыскиваемого топлива. На современных двигателях дроссельная заслонка приводится в действие с помощью электродвигателя и не имеет механической связи с педалью газа.

Впускной коллектор распределяет поток воздуха по цилиндрам двигателя и придает ему необходимое движение. Разряжение, возникаемое во впускном коллекторе используется в работе вакуумного усилителя тормозов, а также для привода впускных заслонок.

На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке устанавливаются впускные заслонки. Они обеспечивают процесс смесеобразования за счет разделения воздуха на два впускных канала. Один канал перекрывает заслонка, через другой – воздух проходит безпрепятственно. Впускные заслонки установлены на общем валу, который поворачивается с помощью вакуумного или электрического привода.

Работу впускной системы обеспечивает система управления двигателем. Конструктивные элементы системы управления двигателем, которые используются в работе системы впуска, можно разделить на три группы: входные датчики, блок управления иисполнительные устройства.

К примеру, впускная система двигателя с непосредственным впрыском топлива имеет следующие входные датчики: расходомер воздуха, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, положения впускной заслонки, положения клапана рециркуляции, давления в магистрали вакуумного усилителя тормозов.

Расходомер воздуха и датчик температуры воздуха на впуске служат для определения нагрузки на двигатель. На некоторых моделях двигателей расходомер воздуха не устанавливается. Его функции выполняет датчик давления во впускном коллекторе. При совместной установке расходомер воздуха и датчик давления во впускном коллекторе дублируют друг друга. Датчик давления во впускном коллекторе также используется в работе системы рециркуляции отработавших газов для расчета количества перепускаемых газов. Величина нагрузки двигателя определяется с помощью датчика температуры воздуха на впуске и дополнительного датчика атмосферного давления. Остальные датчики обеспечивают работу соответствующих систем.

Работой впускной системы управляют следующие исполнительные устройства:

  • блок управления дроссельной заслонкой;
  • электродвигатель привода впускных заслонок или клапан управления вакуумным приводом заслонок (на двигателе с непосредственным впрыском топлива);
  • запорный клапан системы улавливания паров бензина;
  • электромагнитный клапан системы рециркуляции отработавших газов.

Исполнительные устройства активирует блок управления двигателем.

Принцип работы впускной системы

Работа впускной системы основана на разности давлений в цилиндре двигателя и атмосфере, возникающей на такте впуска. Объем поступающего воздуха при этом пропорционален объему цилиндра. Величина поступающего воздуха регулируется положением дроссельной заслонки в зависмости от режима работы двигателя.

На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке работают впускные заслонки. Совместная работа дроссельной и впускных заслонок обеспечивает несколько видов смесеобразования:

  • послойное смесеобразование;
  • бедное гомогенное смесеобразование;
  • стехиометрическое гомогенное смесеобразование.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. При послойном смесеобразовании дроссельная заслонка большую часть времени открыта полностью. Заслонка прикрывается только для обеспечения разряжения, необходимого в работе системы улавливания паров бензина (продувка адсорбера), системы рециркуляции отработавших газов (перепуск отработавших газов во впускной коллектор) и вакуумного усилителя тормозов (создание необходимого разрежения). Впускные заслонки закрыты.

Читайте также:  Включение печки повышает обороты двигателя

Стехиометрическое (легковоспламеняемое) гомогенное (однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. Дроссельная заслонка открывается в соответствии с требуемым крутящим моментом. Впускные заслонки открыты.

На бедной гомогенной смеси двигатель работает в промежуточных режимах. Дроссельная заслонка открывается также в соответствии с требуемым крутящим моментом. Впускные заслонки закрыты.

Источник

Система впуска автомобиля

Двигатели автомобиля постоянно совершенствуются, что в свою очередь приводит не только к осложнению конструкции узлов и механизмов, но и появлению новых систем. Таковой, к примеру, является система впуска, которая появилась с широким внедрением электроники в конструкции силовых установок.

На карбюраторных моторах впускная система отсутствовала как таковая, хотя ее некоторые составные части использовались – воздухозаборник, фильтрующий воздушный элемент, коллектор. В их задачу входила подача воздуха в двигатель, а после прохождения воздушного потока через карбюратор – топливовоздушной смеси в цилиндры. С появлением инжекторов с электронным управлением, конструкция элементов, обеспечивающих наполнение воздухом камер сгорания, усложнилась, добавились новые, в результате образовалась полноценная система впуска.

Система продолжает выполнять все ту же задачу – наполнение цилиндров воздухом. Но за счет использования электронного управления, удается обеспечить заполнение цилиндров оптимальным количеством воздуха в любых режимах работы мотора. Это позволяет поддерживать требуемые пропорции топливовоздушной смеси для получения максимального выхода мощности при минимально возможном расходе топлива. Оптимальная пропорция для смеси является 14,7 частей воздуха на 1 часть топлива. Именно этот состав и старается поддерживать впускная система практически на любом режиме работы мотора.

Конструкция

Такое функционирование системы впуска обеспечивается использованием электроники. А это значит, что все составные элементы ее делятся на три основных категории:

  1. Следящие устройства (датчики)
  2. Блок управления (ЭБУ, он же ЭСУД)
  3. Исполнительные механизмы

Первые контролируют ряд параметров и на основе их показаний ЭБУ подает сигналы на исполнительные устройства, благодаря чему и корректируется количество подаваемого воздуха.

Система впуска Audi RS4

Следящих устройств, используемых в конструкции впускной системы – достаточно много. Она включает в себя такие датчики как:

Система впуска Audi RS4

  • массового расхода воздуха или ДМРВ (расходомер);
  • температуры воздуха в коллекторе;
  • давления (атмосферного, в коллекторе);
  • положения заслонок;
  • положения клапана системы рециркуляции отработанных газов.

Это общий перечень следящих устройств, которые может включать система впуска. В определенных конструкциях моторов каких-то из них может и не быть. К примеру, на некоторых моторах ДМРВ не устанавливается, а его функцию выполняет датчик давления в коллекторе.

Основными из указанных следящих устройств являются ДМРВ и температурный датчик. Они подают на блок управления информацию о нагрузке на силовую установку. Остальные же датчики являются вспомогательными и обеспечивают информацией, на основе которой ЭБУ принимает более верные решения.

Датчик температуры воздуха в коллекторе

Поскольку впускная система, как и другие, управляется ЭБУ, то понятно, что она взаимодействует с рядом из них. Ее работа «переплетается» с системами:

  • впрыска;
  • рециркуляции отработанных газов;
  • улавливания топливных паров.

Также она взаимодействует с усилителем тормозной системы (вакуумным).

Элементы впускной системы

Конструкция исполнительного механизма включает в себя ряд элементов, указанных выше, а также некоторые другие. Он включает в себя:

  • заборник;
  • фильтрующий элемент;
  • дроссельный узел;
  • коллектор;
  • соединительные трубопроводы;
  • резонатор.

В инжекторных системах с прямым впрыском исполнительный механизм включает в себя также впускные заслонки.

Коллектор в системе прямого впрыска автомобилей VW

Назначение составных частей. Принцип работы

Всасывание воздуха, как и ранее, производится за счет разрежения, создаваемого в цилиндрах на такте впуска (поршень уходит вниз, впускные клапаны открыты).

Заборник обеспечивает всасывание воздуха из атмосферы. Фильтрующий элемент проводит его очистку от загрязняющих элементов (фильтр – целлюлозный и относиться к расходным материалам).

Читайте также:  Субару аутбек стук двигателя

Резонатор устанавливается на впуске до воздушного фильтра, также может быть малый резонатор после него и перед дроссельной заслонкой. Его основной задачей является снижение шума, исходящего от двигателя при сгорании топлива и разделение воздушных потоков. И это не все, еще он сглаживает пульсации воздуха и защищает двигатель от гидроудара.

Основным дозирующим элементом является дроссельный узел. За счет заслонки он регулирует объем воздуха, подающегося в коллектор. Дроссельная заслонка присутствовала и в карбюраторном двигателе. Но там ее открытие управлялось водителем за счет механической связи ее с педалью газа. В современном инжекторе же все чаще дроссель работает от электрического привода, которым управляет ЭБУ. Это позволяет, на основе показаний датчиков, а также положения педали акселератора, блоку определить угол открытия заслонки, чтобы обеспечить подачу точного количества воздуха.

Впускная система двигателя с непосредственным впрыском топлива

В дизелях и инжекторных моторах с непосредственным впрыском коллектор обеспечивает распределение поступающего воздуха по цилиндрам. В инжекторах же с распределенной подачей топлива он дополнительно используется для обеспечения смесеобразования (в коллектор устанавливают форсунки, которые впрыскивают бензин в проходящий поток). Также разрежение, создающееся в коллекторе, используется для функционирования усилителя тормозов, он включает в себя еще и клапан системы рециркуляции отработанных газов.

Впускная система функционирует очень просто: за счет такта впуска цилиндры создают разрежение, что приводит к засасыванию воздуха из атмосферы. При этом датчики улавливают требуемые параметры – скорость его движения, температуру перед и за дросселем и т.д. На основе этих данных, положения педали газа, а также на информации, поступающей от датчиков системы впрыска, ЭБУ подает сигнал на привод дроссельного узла, и его заслонка открывается на угол, который обеспечит подачу в коллектор требуемого количества воздуха.

Поскольку ЭБУ собирает информацию со всех следящих устройств постоянно, то реакция на изменение режима работы мотора – очень высокая, соответственно система впуска быстро подстраивается под новые условия, обеспечивая оптимальное смесеобразование.

Новые наработки

Конструкторы постоянно совершенствуют устройство составных частей двигателя, касается это и системы впуска.

Они улучшают используемые датчики, чтобы повысить их точность и долговечность. В основном, это сводится к использованию новых принципов работы.

Более интересными являются наработки, касающиеся конструкции элементов исполнительного механизма, в частности – коллектора.

К примеру, инжекторные моторы с прямым впрыском оснащаются коллекторами с дополнительными заслонками – впускными (они же – вихревые). При этом вносятся конструктивные изменения и в головке блока. Такая впускная система подразумевает наличие двух каналов подачи воздуха к впускным клапанам. И разделение этих каналов делается в головке блока. Используемые впускные заслонки применяются для перекрытия этих каналов.

Система впуска такой конструкции позволяет получить три типа смесеобразования для обеспечения максимально эффективной работы силового агрегата:

  1. Послойное
  2. Обедненное гомогенное
  3. Стехиометрическое гомогенное

А суть этой доработки сводится к тому, что на определенных режимах впускные заслонки перекрывают тот или иной канал, чтобы получить требуемое смесеобразование.

Еще один вариант конструктивного исполнения коллектора впускной системы – переменной длины. Суть работы этого коллектора сводится к тому, что при холостом ходу воздух движется по длинному пути, но при начале работы мотора под нагрузкой открывается специальный клапан, который сокращает путь движения воздуха, что обеспечивает более быстрое наполнение цилиндров воздухом.

Коллектор двигателя HEMI

В дальнейшем, возможно появление еще каких-то более интересных решений для получения максимальной эффективности работы этой составляющей силового агрегата.

Источник

Adblock
detector