Возбудитель синхронного двигателя что это

Содержание
  1. Синхронный электродвигатель с обмоткой возбуждения
  2. Конструкция синхронного электродвигателя с обмоткой возбуждения
  3. Принцип работы
  4. Статор: вращающееся магнитное поле
  5. Ротор: постоянное магнитное поле
  6. Синхронная скорость
  7. Прямой запуск синхронного двигателя от электрической сети
  8. Почему синхронные электродвигатели не запускаются от электрической сети?
  9. Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети
  10. Выход из синхронизма
  11. Синхронный компенсатор
  12. Digitrode
  13. цифровая электроника вычислительная техника встраиваемые системы
  14. Тиристорные возбудители синхронных двигателей: назначение и принцип работы
  15. Особенности, устройство и принцип работы синхронного двигателя простым языком
  16. Устройство
  17. Принцип работы
  18. Типы синхронных двигателей
  19. Режимы работы
  20. СИБЭЛЕКТРОТЕХНИК
  21. ПРОИЗВОДСТВО ЭЛЕКТРОТЕХНИЧЕСКОГО ОБОРУДОВАНИЯ ДЛЯ ПРОМЫШЛЕННЫХ МЕХАНИЗМОВ, РАЗРАБОТКА И ИЗГОТОВЛЕНИЕ НЕСТАНДАРТНОГО ЭЛЕКТРООБОРУДОВАНИЯ
  22. Возбудители синхронных машин
  23. Возбудители для синхронных двигателей и генераторов.

Синхронный электродвигатель с обмоткой возбуждения

Конструкция синхронного электродвигателя с обмоткой возбуждения

Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.

Принцип работы

Постоянная скорость вращения синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.

Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора

Статор: вращающееся магнитное поле

На обмотки катушек статора подается трехфазное переменное напряжение. В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется вращающееся магнитное поле можно прочитать в статье «Трехфазный асинхронный электродвигатель».

Ротор: постоянное магнитное поле

Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже. Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля. Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил. Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.

Синхронная скорость

Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:

,

  • где Ns – частота вращения магнитного поля, об/мин,
  • f – частота тока статора, Гц,
  • p – количество пар полюсов.

Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.

Прямой запуск синхронного двигателя от электрической сети

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Читайте также:  Как почистить карбюратор не снимая с двигателя

Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.

Выход из синхронизма

Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.

Синхронный компенсатор

Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами. В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.

Источник

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Тиристорные возбудители синхронных двигателей: назначение и принцип работы

Возбудители предназначены для питания обмоток возбуждения и управления током возбуждения синхронных двигателей.

Напряжение питания цепей защиты 220 В постоянного тока. Схема возбудителя предусматривает автоматический, ручной и аварийный режимы управления током возбуждения.

При работе в режиме ручного управления возбудитель обеспечивает:

• пуск СД с автоматической подачей возбуждения в функции тока статора;
• плавную регулировку тока возбуждения от 0,3 до 1,4 Iрн с возможной подстройкой граничных пределов;
• ограничение тока возбуждения по минимуму в пределах 0-0,5 Iрн;
• ограничение тока возбуждения по максимуму в пределах 0,8-1,75 Iрн;
• защиту ротора от длительной перегрузки по току;
• форсировку по напряжению 1,75 номинального значения при номинальном напряжении сети, питающей возбудитель. Форсировка срабатывает при падении напряжения сети статора на 15-20% от номинального значения;
• форсированное гашение поля ротора при отключении двигателя и наличии дополнительного сигнала на гашение поля.

При работе в режиме автоматического управления возбудитель. Кроме режимов, перечисленных выше, обеспечивает автоматическое регулирование по любому из следующих законов или по их комбинациям;

• по току возбуждения;
• по напряжению статора;
• по полному току статора;
• по углу узла нагрузки;
• по реактивному току статора;
• по внутреннему углу машины;
• по активному току статора;

При работе в режиме аварийного управления возбудитель обеспечивает только регулировку току возбуждения от нуля до форсировочного значения с возможностью подстройки граничных пределов.

Читайте также:  Какой двигатель лучше турбированный или обычный

Напряжение питания = 220 В из схемы управления масляным выключателем подается через автоматический выключатель S4 на релейную схему возбудителя.

Реле K1 — выполняет функцию защитного реле, т.е. оно принимает сигнал о недопустимой работе возбудителя по цепям 137 или 180 и становится на питание через свой контакт и кнопку деблокировки защит S9. Своим замыкающим контактом К1 отключает М.В. и размыкающим контактом в цепи включения К4, а также подает инвертирующий сигнал при отключении СД. Р4 своим замыкающим контактом в блоке Б снимает импульсы управления с тиристоров возбудителя. Реле К7 служит для определения момента спадания тока статора при пуске до требуемого значения. Реле К5 включает и отключает пусковое сопротивление вместе с герконовым реле К8 и К9 второй геркон К9 работает на защиту от асинхронного хода двигателя.

При спадании тока статора отключается реле К4, срабатывает реле времени К10, которое с выдержкой времени включает промежуточное реле К6, снимающее запрет на подачу импульсов управления. В обмотку ротора подается ток возбуждения, срабатывает реле К8, К5 и закрываются тиристоры V11, V12 в цепи гасящего сопротивления R16.

Источник

Особенности, устройство и принцип работы синхронного двигателя простым языком

Электродвигатели прочно закрепились в качестве важнейших составляющих большинства приборов, ежедневно используемых человеком. Одним из видов электрических машин для вращения рабочего органа является синхронный электродвигатель. Особенности устройства и принцип работы синхронного двигателя, мы рассмотрим далее.

Устройство

Конструктивно любой синхронный агрегат представляет собой статор и ротор, объединенные в одном корпусе. Статорная обмотка наматывается в пазы неподвижного магнитопровода, собранного из ферромагнитного материала. Конструкция ротора может включать в себя обмотку, смонтированную на железном каркасе, или постоянный магнит, установленный на валу. Задача и одного, и второго – создать магнитный поток, взаимодействующий с электромагнитным полем статора.

Принцип работы

На основании п.53 ГОСТ 27471-87 понятие синхронного двигателя подразумевает бесконтактную машину, работающую на переменном токе. У которой в установившемся режиме отношение частоты вращения ротора к частоте тока в обмотках якоря не зависит от величины нагрузки при номинальной работе.

С практической стороны это выглядит следующим образом:

  • на обмотки статора, также называемого якорем, подается трехфазное напряжение;
  • по мере нарастания амплитуды синусоиды в одной фазе, будет пропорционально увеличиваться ток и электромагнитное поле, создаваемое вокруг обмотки;
  • в виду того, что синусоида нарастает во всех трех фазах двигателя поочередно, пик максимального электромагнитного поля будет смещаться от одной обмотки к другой по часовой стрелке;
  • магнитное поле ротора (индуктора) поочередно притягивается собственными полюсами к противоположному по знаку вектору поля статора.

В результате такого взаимодействия возникает поступательное вращение вала синхронного двигателя вокруг своей оси. Так как в индукторе постоянно присутствуют сформированные независимым источником силовые линии, частота его вращения полностью соответствует частоте напряжения, подаваемого в обмотки якоря. Возникает синхронизм в двигателе.

Типы синхронных двигателей

В целом синхронные двигатели подразделяются на несколько категорий, в зависимости от их конструктивных особенностей.

Так, для получения потока возбуждения используют:

  • обмотку на роторе – для обеспечения электромагнитного взаимодействия на обмотку подается питание от стороннего источника;
  • магнитный ротор – вспомогательное магнитное поле ротора создается постоянными магнитами, установленными на нем;
  • реактивный ротор – форма магнитопровода индуктора выполнена таким образом, что силовые линии якоря преломляются до получения синхронного вращения.
Читайте также:  Какой двигатель был на первом самолете братьев райт

В зависимости от конструкции ротора, выделяют явнополюсный и неявнополюсный синхронный двигатель.

По режиму работы могут использоваться в качестве электродвигателя, генератора или синхронного компенсатора.

Режимы работы

На практике, каждая электрическая машина может применяться в различных режимах работы:

  • Режим двигателя – агрегат функционирует по принципу преобразования электрической энергии в механическую. Напряжение подается на выводы якоря и преобразуется во вращательное усилие на роторе.
  • Генераторный режим – в этом случае вал двигателя вращается за счет турбины или другого объекта, а с выводов якоря снимается сгенерированное напряжение.
  • Синхронный компенсатор – электродвигатель включается в распределительную сеть на холостом ходу. При этом повышается коэффициент мощности системы за счет потребления реактивной мощности.

P.S. Больше других деталей о синхронном двигателе , а также о том чем он отличается от асинхронного двигателя смотрите в видео:

Источник

СИБЭЛЕКТРОТЕХНИК

ПРОИЗВОДСТВО ЭЛЕКТРОТЕХНИЧЕСКОГО ОБОРУДОВАНИЯ ДЛЯ ПРОМЫШЛЕННЫХ МЕХАНИЗМОВ, РАЗРАБОТКА И ИЗГОТОВЛЕНИЕ НЕСТАНДАРТНОГО ЭЛЕКТРООБОРУДОВАНИЯ

Возбудители синхронных машин

Возбудители для синхронных двигателей и генераторов.

Изготовим возбудители для синхронных двигателей, синхронных генераторов.
Возбудители предназначены для управления и питания обмоток возбуждения синхронных электродвигателей и генераторов.

Изготовим возбудители для замены выпрямителей и возбудителей типов ТВ, ТВУ, ВТЭ, ТЕ8, В-ТПЕ, ВТЕ, ВТП, ТВР, ТПВ, ТП, ГСН и т.п., а также электромашинных возбудителей.

Возбудители изготавливаются с естественным, принудительным и водяным охлаждением.

ВТЕ-300/115 Тиристорный возбудитель, напряжение возбуждения 115В, номинальный ток возбуждения 300А, с естественным охлаждением, с аналоговой системой управления.

ВТП-280/48-Ц Тиристорный возбудитель, напряжение возбуждения 48В, ток возбуждения 280А, с принудительным воздушным охлаждением, с цифровой системой управления.

ВТВ-300/75 Тиристорный возбудитель, напряжение возбуждения 75В, ток возбуждения 300А, с водяным охлаждением, с аналоговой системой управления.

Возбудители синхронных машин нашего производства, обеспечивают:
— пуск синхронного электродвигателя в асинхронном режиме (прямым пуском),разгоном машиной постоянного тока или реакторным пуском;
— автоматическую подачу тока возбуждения при разгоне электродвигателя до под синхронной скорости;
— ограничение времени пуска электродвигателя, защиту от перегрузки;
— регулирование тока возбуждения синхронного электродвигателя от нуля до номинального значения;
— поддержание тока возбуждения синхронного электродвигателя в рабочем режиме на заданном уровне;
— уменьшение тока возбуждения (ослабление поля) при работе синхронного двигателя без нагрузки;
— максимальную токовую защиту от коротких замыканий в цепи обмотки возбуждения синхронного электродвигателя;
— защиту силовых тиристоров от перенапряжения в процессе запуска синхронного электродвигателя;
— нулевую защиту (отключение) преобразователя при исчезновении напряжения питающей сети и при обрыве цепи технологических блокировок.

По дополнительному заказу, ВТ укомплектовывается цифро аналоговыми преобразователями, панелью оператора, для управления преобразователем и снятия информации об электрических параметрах возбудителя и синхронной машины.

Изготовим блоки для замены возбудителей дизель генераторных станций, для замены таких блоков как: усилитель У, блок защиты БЗ, блок отсечки БО, корректор напряжения КН8, корректор напряжения КРН, плата усилителя СУН и другие блоки возбуждения которые уже не выпускаются.

Источник

Adblock
detector