Водород как топливо для ракетных двигателей

Россия утратила технологии водородных ЖРД

В чем преимущества водородных ракетных двигателей? По сравнению с аналогами, они имеют наибольший удельный импульс по сравнению с их керосиновыми аналогами.

Однако и недостатков хватает. Водород трудно хранить. Он чрезвычайно взрывоопасен. Баки с жидким водородом требуют термоизоляции, а значит намного тяжелее. Наконец, у Водорода меньшая плотность и поэтому баки выходят большими.

Благодаря этим недостаткам в России долго время не рассматривали водород как перспективное топливо, несмотря на то, что идея использовать водород в качестве такового впервые была выдвинута К.Циолковским в 1903 году.

Однако за рубежом, исследователи пошли другим путем и к середине 1960-х создали целую линейку водородных ступеней для ракет.

Тут надо оговориться и сказать, что благодаря своим свойствам, водород наиболее оправдан в применении на тяжелых или сверхтяжелых носителях, но лишь в верхних ступенях этих ракет, где приоритет тяги уменьшается, а цена массы растет.

Но успехи говорят сами за себя. Водородные двигатели верхней ступени Сатурн-5 позволили этой ракете выводить на НОО орбиту до 140 тонн и сделали возможной лунную программу. Система Спейс Шаттл также использовала в качестве топлива второго этапа тот самый водород.

В нашей стране, водородные двигатели РД-0120 были созданы для ракетного комплекса «Энергия» и тогда это было большим успехом.

В 1991 году для этих двигателей просто не нашлось ракет. Энергия была сдана в утиль.

Сегодня произошло то, во, что так не могут поверить адепты лунного заговора. Подобно США с их ракетой Сатурн-5 , Россия полностью утратила технологию изготовления этих двигателей. Нет производственных мощностей, нет квалифицированного персонала.

И вот тут, нам как назло подобный двигатель понадобился. Сверхтяжелые ракеты для покорения Луну стали строить в США, их проектируют в Китае и в каждой из них есть водородные ступени. Мы тоже начали проектировать такой носитель «Енисей», но вот в чем беда, водородных двигателей для него мы больше не имеем. Изначально, под в качестве 3 ступени планировалось использовать КВТК , но есть большие сомнения в том, что его успеют доделать.

По предварительным подсчетам экспертов, стоимость возобновления производства этого двигателя превышает $1 млрд и займет до 8 лет.

Вот вам и наглядный пример того, как теряются технологии и того, почему иногда проще сделать с нуля, чем восстанавливать старое.

Дорогие друзья, нам очень важна ваша поддержка- подписывайтесь на канал, ставьте палец вверх. Вам не сложно, а нам приятно😉

Источник

Водород как топливо – прорыв или тупиковое направление?

Водород – топливо, обладающее самой высокой теплотворной способностью (энергетической ценностью) на единицу массы. При сгорании килограмма гидрогена выделяется около 140 МДж энергии, тогда как аналогичная масса бензина или пропан-бутана дает порядка 50 МДж, спирта – 30 МДж, а угля – около 20-25 МДж. Поэтому неудивительно, что ученые уже давно пытаются разработать методы эффективного использования водорода в качестве горючего для транспорта.

Водород – это непросто

Помимо плюсов, есть у водорода и недостатки. Во-первых, гидроген – самый легкий химический элемент, его атом содержит по одному протону и электрону. Простое вещество, состоящее из двух атомов, из-за этого имеет очень малую плотность (0,09 кг/м³) и обладает большой летучестью. Это порождает проблемы хранения и транспортировки газа. Ведь чтобы запасти достаточно энергии для автомобиля – нужно сильно сжать газ (в сотни раз), что требует использования прочных и тяжелых баллонов.

Выдающиеся энергетические характеристики водорода, являющиеся его достоинством, являются также и источником повышенного риска. Смешиваясь с воздухом, он образует гремучий газ, взрывающийся от малейшей искры. Этот газ намного опаснее других горючих газов, используемых на транспорте.

Если метан взрывается при концентрации в воздухе от 4 до 17%, пропан – от 2 до 10% (если газа будет меньше или больше – «бабах» не произойдет), то для водорода концентрация практически не имеет значения. Это значит, что в случае ДТП риск взрыва авто с водородным мотором гораздо выше, чем с бензиновым или газовым.

Кроме того, через микроскопические поры и трещины водород улетучивается намного легче и быстрее другого топлива, из-за чего даже небольшое повреждение топливных магистралей может повлечь взрыв в подкапотном пространстве. Порой даже трещин не надо, так как маленькая молекула способна просачиваться через многие материалы (в том числе, металлы).

Производят водород несколькими способами, самые популярные из них – разложение метана путем паровой конверсии, и воды – методом электролиза. Первый метод требует, по большому счету, только газ метан (он и сырье, и энергоноситель), а электролиз воды требует электроэнергию. Полученный таким путем газ стоит дороже, а сам КПД процесса электролиза весьма невысок. Это тоже неидеальный вариант.

Массовые авто на водороде: быть или не быть?

Перечисленные нюансы очень затрудняют широкое использование водорода в качестве топлива для авто. Эксперименты в этой области ведутся давно, некоторые модели машин, работающих на водороде, производятся малой серией, кое-где в мире работают водородные автозаправки. Однако прогресс в данной отрасли продвигается медленно, таких заправок во всем мире ничтожное количество.

Так как в чистом виде водород, пригодный для добычи, нигде в больших объемах не встречается, получать его можно только химическим методом. Для этого нужен или природный газ, или много электроэнергии. Но их можно с пользой применять на авто и безо всякой переработки.

Несмотря на меньшую калорийность, метан и электричество дешевле, безопаснее и проще в использовании, даже при нынешнем уровне развития газовых и электромобилей. Изобретение велосипеда в лице перехода на водород в такой ситуации не сильно-то и нужно. Оно может быть оправдано при потребности получить большую мощность с маленького мотора, но это и современным электромоторам вполне под силу.

Читайте также:  С каким двигателем выбирать рено логан

По мере прогресса в области технологий хранения электроэнергии привлекательность водорода расти не будет. Поэтому ждать популяризации автомобилей, работающих на гидрогене, не стоит. С большой долей вероятности, они так никогда и не станут чем-то большим, чем одна из экспериментальных, но тупиковых ветвей эволюции техники.

Источник

Водород – топливо будущего

Водородо-кислородную смесь, как самую энергетически емкую, предлагал использовать в двигателях К.Э. Циолковский еще в 1903 году. Водород уже применяют как топливо: для автомобилей (от полуторки до Тойоты «Мирай»), реактивных самолётов (от «Хейнкель» до Ту-155), торпед (от GT 1200A до «Шквала»), ракет (от «Сатурна» до «Бурана»). Новые аспекты открывает получение металлического водорода и практическое применение реактора Росси. В недалеком будущем развитие технологий получения дешевого водорода из сероводорода Чёрного моря и непосредственно из источников дегазации Земли. Не смотря на противодействие нефтяного лобби, мы неумолимо вступаем в водородную эру!

Изменяя своё потребление — мы вместе изменяем Мир!

«Плюсы» и «минусы» водородного топлива

Водородное топливо имеет ряд особенностей:

  • Теплоотдача водорода на 250% выше, чем у топливно-воздушной смеси.
  • После сжигания водородной смеси на выходе образуется только пар.
  • Реакция воспламенения происходит быстрее, чем с другими видами топлива.
  • Благодаря детонационной устойчивости, удается поднять степень сжатия.
  • Хранение такого топлива происходит в жидкой или сжатой форме. В случае пробоя бака водород испаряется.
  • Нижний уровень пропорции газа для вхождения в реакцию с кислородом составляет 4%. Благодаря этой особенности, удается настроить режимы работы двигателя путем дозирования консистенции.
  • КПД водородного двигателя достигает 90 процентов. Для сравнения, дизельный мотор имеет коэффициент полезного действия на уровне 50%, а обычный ДВС — 35%.
  • Водород — летучий газ, поэтому он попадает в мельчайшие зазоры и полости. По этой причине немногие металлы способны перенести его разрушительное влияние.
  • Возникает меньший уровень шума при работе двигателя.

Первый двигатель на водороде заработал в СССР в 1941 году!

Будете удивлены, но первый двигатель обычной «полуторки» заработал на водороде в блокадном Ленинграде в сентябре 1941 года! Молодому младшему техник-лейтенанту Борису Щелищу, руководившему подъемом аэростата заграждения, было приказано в отсутствии бензина и электричества наладить работу лебёдок. Поскольку аэростаты заполнялись водородом, ему пришла мысль использовать его как топливо.

Во время опасных опытов сгорели два аэростата, взорвался газгольдер, сам Борис Исаакович получил контузию. После этого для безопасной эксплуатации воздушно-водородной «гремучей» смеси он придумал специальный водяной затвор, исключавший воспламенение при вспышке во всасывающей трубе двигателя. Когда все наконец получилось, приехали военачальники, убедились, что система работает нормально, и приказали за 10 дней перевести все аэростатные лебедки на новый вид горючего. В виду ограниченности ресурсов и времени, Щелищ остроумно применил для изготовления гидрозатвора списанные огнетушители. И задача подъёма аэростатов заграждения была успешно решена!

Бориса Исааковича наградили орденом «Красной звезды» и командировали в Москву, его опыт использовали в частях ПВО столицы — 300 двигателей перевели на «грязный водород», было оформлено авторское свидетельство №64209 на изобретение. Таким образом был обеспечен приоритет СССР в развитии энергетики будущего. В 1942 году необычный автомобиль демонстрировался на выставке техники, приспособленной к условиям блокады. При этом его двигатель проработал 200 часов без остановки в закрытом помещении. Отработанные газы — обыкновенный пар — не загрязняли воздух.

В 1979 году под научным руководством Шатрова Е.В. творческим коллективом работников НАМИ в составе Кузнецова В.М. Раменского А.Ю., Козлова Ю.А. был разработан и испытан опытный образец микроавтобуса РАФ, работающий на водороде и бензине.

Испытания РАФ 22031 (1979 г.)

Подводные аппараты на перекиси водорода

В 1938—1942 годах на Кильских верфях под руководством инженера Вальтера построили опытную лодку У-80 работавшую на перекиси водорода. На испытаниях корабль показал скорость полного подводного хода 28,1 узла. Полученные в результате разложения перекиси пары воды и кислорода использовали в качестве рабочего тела в турбине, после чего удаляли их за борт.

На рисунке условно показано устройство подводной лодки с двигателем на перекиси водорода

Всего немцы успели построить 11 лодок с ПГТУ.

После разгрома гитлеровской Германии в Англии, США, Швеции и СССР проводились работы с целью довести замысел Вальтера до практической реализации. Была построена советская подлодка (проект 617) с двигателем Вальтера в конструкторском бюро Антипина.

«Это была первая подводная лодка СССР, перешагнувшая 18-узловую величину подводной скорости: в течение 6 часов её подводная скорость составляла более 20 узлов! Корпус обеспечивал увеличение глубины погружения вдвое, то есть до глубины 200 метров. Но главным достоинством новой подводной лодки была её энергетическая установка, явившаяся удивительным по тем временам новшеством. И не случайно было посещение этой лодки академиками И. В. Курчатовым и А. П. Александровым — готовясь к созданию атомных подводных лодок, они не могли не познакомиться с первой в СССР подводной лодкой, имевшей турбинную установку. Впоследствии, многие конструктивные решения были заимствованы при разработке атомных энергетических установок…» — писал Александр Тыклин.

Тем временем успехи атомной энергетики позволили более удачно решить проблему мощных подводных двигателей. И эти идеи успешно применили в торпедных двигателях. Walter HWK 573. (работающий под водой двигатель первой в мире управляемой противокорабельной ракеты «воздух-поверхность» GT 1200A для поражения корабля ниже ватерлинии). Планирующая торпеда (УАБ) GT 1200A имела подводную скорость 230 км/ч, являясь прототипом высокоскоростной торпеды СССР «Шквал». Торпеда ДБТ принята на вооружение в декабре 1957 года, работала на перекиси водорода и развивала скорость 45 узлов при дальности хода до 18 км.

Газогенератором через кавитационную головку создается воздушный пузырь вокруг корпуса объекта (парогазовый пузырь) и, вследствие падения гидродинамического сопротивления (сопротивления воды) и применения реактивных двигателей, достигается требуемая подводная скорость движения (100 м/с), превышающая в разы скорость самой быстрой обычной торпеды. Для работы используется гидрореагирующее топливо (щелочные металлы при взаимодействии с водой выделяют водород).

Ту-155 на водороде установил 14 мировых рекордов!

Во время ВОВ Фирма «Хейнкель» создала под двигатель Вальтера Walter HWK-109-509 с тягой 2000 кгс., работавший на перекиси водорода, целую линейку реактивных самолетов.

Вполне успешный, но, к сожалению, не ставший серийным опыт создания «экологических» самолетов у России был уже в конце 80-х годов прошлого столетия. Миру был представлен Ту-155 (экспериментальная модель Ту-154), работающий на сжиженном водороде, а затем и на сжиженном природном газе. 15 апреля 1988 года самолет был впервые поднят в небо. Он установил 14 мировых рекордов и выполнил порядка ста рейсов. Однако затем проект ушел «на полку».

Читайте также:  Почему троит двигатель на фольксвагене б5

В конце 1990-х по заказу «Газпрома» был построен Ту-156 с двигателями на сжиженном газе и традиционном авиационном керосине. Этот самолет постигла та же участь, что и Ту-155. Представляете, насколько тяжело бороться с нефтяным лобби даже Газпрому!

Водородомобили

Автомобили с двигателями, работающими на водороде, делятся на несколько групп:

  • Транспортные средства, работающие на чистом водороде или топливно-воздушной смеси. Особенность таких двигателей заключается в чистом выхлопе и увеличении КПД до 90%.
  • Машины с гибридным двигателем. Они обладают экономичным мотором, способным работать на чистом водороде или бензиновой смеси. Такие транспортные средства соответствуют стандарту Евро-4.
  • Автомобили со встроенным электродвигателем, питающим водородный элемент на борту транспортного средства.

Главной особенностью водородомобилей является способ подачи горючего в камеру сгорания и его воспламенения.

Уже выпускаются серийно такие модели водородомобилей, как:

  • Ford Focus FCV;
  • Mazda RX-8 hydrogen;
  • Mercedes-Benz A-Class;
  • Honda FCX;
  • Toyota Mirai;
  • Автобусы MAN Lion City Bus и Ford E-450;
  • гибридный автомобиль на два вида топлива BMW Hydrogen 7.

Серийный водородомобиль Тойота «Мирай».

Этот автомобиль может разогнаться до 179 км/ч, причем до 100 км/ч машина разгоняется за 9,6 секунды и, самое главное, она способна проехать без дополнительной дозаправки 482 км

Концерн БМВ представил свой вариант автомобиля Hydrogen. Новая модель протестирована известными деятелями культуры, бизнесменами, политиками и другими популярными личностями. Испытания показали, что переход на новое топливо не влияет на комфортабельность, безопасность и динамику транспортного средства. При необходимости виды горючего можно переключать с одного на другой. Скорость Hydrogen7 — до 229 км/час.

Honda Clarity — автомобиль от концерна Хонда, который поражает запасом хода. Он составляет 589 км, чем не может похвастаться ни одно транспортное средство с низким уровнем выбросов. На дозаправку уходит от трех до пяти минут.

Home Energy Station III — это компактный блок, включающий в себя топливные элементы, баллон для хранения водорода и риформер природного газа, извлекающий H2 из газовой трубы.

Метан из бытовой сети превращается этим аппаратом в водород. А он — в электричество для дома. Мощность топливных элементов в Home Energy Station составляет 5 киловатт. Кроме того, встроенные баллоны с газом служат своеобразными аккумуляторами энергии. Станция использует этот водород при пике нагрузки на домашнюю электросеть. Вырабатывает 5 кВт электроэнергии и до 2 м3 водорода в час.

К недостаткам водородомобилей можно отнести:

  • громоздкость силовой установки при использовании топливных элементов, снижающей маневренность автомобиля;
  • пока высокую стоимость самих водородных элементов из-за входящих в их состав палладия или платины;
  • несовершенство конструкции и неопределённость в материале изготовления баков для топлива не позволяющих долго хранить водород;
  • отсутствие заправок водородом, инфраструктура которых очень слабо развита во всём мире.

По мере серийного производства большинство этих конструктивных и технологических недостатков будут преодолены, а по мере развития добычи водорода, как полезного ископаемого, и сети заправок, существенно понизится его стоимость.

В 2016 году появился первый поезд на водородном топливе, являющийся детищем немецкой компании Alstom. Планируется, что новый состав Coranda iLint начнет движение по маршруту из Букстехуде в Куксхавен (Нижняя Саксония).

В будущем планируется заменить такими поездами 4000 дизельных составов Германии, перемещающихся по участкам дорог без электрификации.

Во Франции выпустили оригинальную модель велосипеда на водороде. (Французский Pragma). Заливаешь всего 45 грамм водорода и в путь! Расход топлива — примерно 1 грамм на 3 километра.

Водород в космонавтике

Как горючее в паре с жидким кислородом (ЖК) жидкий водород (ЖВ) был предложен в 1903 г. К. Э. Циолковским. Он является горючим, с самым большим удельным импульсом (при любом окислителе), что позволяет при равной стартовой массе ракеты выводить в космос гораздо большую массу полезного груза. Однако на пути применения водородного топлива стояли объективные трудности.

Первая — сложность его сжижения (получение 1 кг ЖВ обходится в 20-100 раз дороже 1 кг керосина).

Вторая — неудовлетворительные физические параметры — чрезвычайно низкая температура кипения (-243°С) и очень малая плотность (ЖВ в 14 раз легче воды), что отрицательно сказывается на возможности хранения этого компонента.

В 1959 г. НАСА выдало крупный заказ на проектирование кислородно-водородного блока «Центавр». Он использовался в качестве верхних ступеней таких РН, как «Атлас», «Титан» и тяжелой ракеты «Сатурн».

Из-за крайне низкой плотности водорода, первые (самые большие) ступени ракет-носителей использовали другие (менее эффективные, но более плотные) виды горючего, например керосин, что позволяло уменьшить размеры до приемлемых. Пример такой «тактики» — ракета «Сатурн-5», в первой ступени которой применялись компоненты кислород/керосин, а во 2-й и 3-й ступени — кислородно-водородные двигатели J-2, тягой по 92104 т каждый.

В качестве примера приведу видео старта «Аполлона-11». На 4й минуте записи происходит отделение 1й ступени и создается иллюзия, что двигатели второй ступени не работают, это породило множество слухов о не реальности полета на Луну. На самом деле, горение водорода в верхних слоях атмосферы происходит «бесцветно», пламя становится заметно, когда в него попадает предмет или кусочки краски.

В системе «Спейс-шаттл», 2я ступень тоже работала паре кислород/водород.

В эпоху бурного развития космонавтики в нашей стране также широко применялись ЖРД с водородным топливом.

Металлический водород

5 октября 2016 года в физической лаборатории Harvard University получили металлический водород. Для этого потребовалось давление 495 гигапаскаль. Если решить вопрос стабильности и охлаждения камеры сгорания (6000 К), то металлический водород станет самым перспективным ракетным топливом.

Ученые предполагают, что металлический водород позволит получить в двигателях импульс 1000-1700 секунд. (В современных ЖРД пока достигнут импульс 460 секунд). Плюс для хранения металлического водорода понадобятся маленькие баки, что позволит делать одноступенчатые ракеты для вывода полезной нагрузки в космос, это откроет новую эру освоения космического пространства!

Получение алмазов

Ещё одно замечательное применение нашёл водород в производстве алмазов. Эволюция водородно — метанового флюида при понижении давления выражается в самоокислении (глубинном горении) водородаи метана в системе С-Н-О с образованием алмазов, воды, и СО. Ярким подтверждением этого процесса является налаженное производство ювелирных алмазов весом до 4 карат и пленочных покрытий из флюидной системы С-Н-О (полупроводники из которых, представляют будущее микроэлектроники). См. статью Алмаз Карбонадо-ценнейший полупроводник будущего.

Читайте также:  Как назначить кнопку завести двигатель в сталкере

Термический реактор Росси

Итальянский изобретатель Андреа Росси при поддержке научного консультанта физика Серджо Фокарди, провели эксперимент:

В герметичную трубку поместили насколько грамм никеля (Ni) добавили 10% алюмогидрида лития, катализатор и заполнили капсулу водородом (Н2). После нагрева до температуры порядка 1100-1300оС, парадоксально, но трубка оставалась в горячем состоянии на протяжении целого месяца, а выделенная тепловая энергия, в несколько раз превышала затраченную на нагрев!

На семинаре в Российском университете дружбы народов (РУДН) в декабре 2014 года, было доложено об успешном повторении этого процесса в России:

По аналогии выполнена трубка с топливом:

Выводы по эксперименту: выделение энергии в 2,58 раза больше затраченной электрической энергии.

В Советском Союзе работы по ХЯС велись с 1960 года в некоторых КБ и НИИ по заказу государства, но с «перестройкой» финансирование прекратилось. На сегодняшний день эксперименты успешно проводятся независимыми исследователями – энтузиастами. Финансирование осуществляется на личные средства коллективов граждан России. Одна из групп энтузиастов, под руководством Самсоненко Н.В., работает в здании «Инженерного корпуса» РУДН.

Ими был проведен ряд калибровочных тестов с электронагревательными приборами и реактором без топлива. В этом случае, как и следовало ожидать, выделяемая тепловая мощность равна подводимой электрической мощности.

Основная проблема – спекание порошка и локальный перегрев реактора, из-за чего нагревательная спираль перегорает и даже сам реактор может прогореть насквозь.

Но А.Г. Пархомову, удалось сделать длительно работающий реактор. Мощность нагревателя 300 Вт, КПД=300%.

Реакция синтеза 28Ni + 1H (ион) = 29Cu + Q согревает Землю изнутри!

Внутреннее ядро Земли содержит никель и водород, при температуре 5000К и давлении 1,36 Мбар, поэтому есть все условия для протекания реакции синтеза в недрах Земли, экспериментально воспроизведённой в реакторе Росси! В результате этой реакции получается медь, соединения которой находят в «черных курильщиках» зонах расширения Земли (срединно-океанических хребтах) в потоке богатом водородом.

Темный водород

В 2016 году учёные из США и Великобритании, создав при мгновенном сжатии давление 1,5 млн. атмосфер и температуру в несколько тысяч градусов, смогли получить третье промежуточное состояние водорода, при котором он одновременно имеет свойства и газа, и металла. Он получил название «тёмный водород», так как в этом состоянии он не пропускает видимый свет, в отличие от инфракрасного излучения. «Тёмный водород», в отличие от металлического, идеально вписывается в модель строения планет-гигантов. Он объясняет, почему их верхние слои атмосферы значительно теплее, чем должны быть, перенося энергию от ядра, а поскольку он обладает значительной электропроводностью, то играет ту же роль, что и внешнее ядро на Земле, формируя магнитное поле планеты!

Генерация водорода из глубин Черного моря

Бог одарил землю Крыма не только красивейшей и разнообразной природой, но и достаточными запасами различных ископаемых, в том числе и углеводородов. Но наш полуостров буквально «купается» в самом большом на планете водном хранилище природных газов, коим является Чёрное море.

Глубинные слои — ниже 150м, состоят из водородосодержащих соединений, основную часть которых составляет сероводород. По приблизительным оценкам, общее содержание сероводорода в Черном море может достигать 4.6 млрд. т, что, в свою очередь, служит потенциальным источником 270 млн. т водорода!

Запатентованы несколько способов разложения сероводорода с получением водорода и серы (H2S H2 + S – Q), включающий контактирование сероводородсодержащего газа через слой твердого материала, способного разлагать его с выделением водорода и образованием серосодержащих соединений на поверхности материала, при давлении 15 атмосфер и температуре 400oС.

Наиболее перспективным, представляется разработка специальных гидрофобных мембран-фильтров, отделяющих водород от других газов прямо на глубине. Ведь мельчайшие из молекул легко просачиваются через металлы и даже в гранитных массивах живут колонии бактерий питающихся водородом!

Давайте помечтаем. Представим себе, что лет через десять на одном из мысов южного побережья Крыма, где морское дно резко понижается до глубин более 200 метров, будет построена небольшая станция. Из моря к ней протянутся рукава труб, на концах которых будут находиться сепараторы сероводорода. Водород после очистки поступит в сеть заправок автотранспорта и на когенераторную теплоэлектростанцию. Рядом с заводом разместиться ферма, где в водородной атмосфере будут выращивать анаэробные микроорганизмы, митоз которых происходит на порядок быстрее их обычных собратьев. Из их биомассы будут производить корм для скота и удобрения.

Мир неумолимо вступает в водородную эру!

Советник президента РФ академик РАН Сергей Глазьев подчеркивал: «Каждый из экономических циклов Кондратьева характеризуется своим энергоносителем: сначала дрова (органический углерод), уголь (углерод), потом нефть и мазут (тяжелые углеводороды), затем бензин и керосин (средние углеводороды), сейчас газ (легкие углеводороды), а основным энергоносителем следующего экономического цикла должен стать чистый водород!»

Применения водорода обширны, многогранны, энергетически выгодны, экологичны, и очень перспективны. Уже наши дети будут ездить на серийных автомобилях на водороде, использовать алмазные микропроцессоры, сделанные по водородной технологии, металлический водород совершит революцию в космонавтике, а развитие реакторов Росси — в энергетике!

Признание теории изначально гидридной Земли (В.Н.Ларина) приведёт к открытию ископаемых месторождений Н2, что сильно удешевит его получение. И не смотря на сопротивление «удушающих» Землю вредными выбросами нефтяных лоббистов, мы неизбежно вступаем в водородную эру!

Источники:

  1. Основы гипотезы В. Н. Ларина. Hydrogen Future
  2. Водородная_дегазация_Земли.
  3. «Таинственный остров» Бориса Шелища. Водородный двигатель в блокадном Ленинграде.
  4. Автореферат диссертации А.Ю.Раменского 1982г.
  5. В России проектируют электросамолет.
  6. ПОДВОДНАЯ РАКЕТО-ТОРПЕДА ВА-111 «ШКВАЛ».
  7. Ракетные мастодонты: Ракеты ценой в город. Александр Грек. Популярная механика. №11, Ноябрь 2003.
  8. Если металлический водород будет стабильным, то наступит ракетная и космическая революция!
  9. Независимое воспроизведение реактора холодного синтеза Андреа Росси в России.
  10. Journal of Nuclear Physics Focardi S, Gabbani V, Montalbano V, Piantelli F, Veronesi S (November 1998). «Large excess heat production in Ni-H systems». Il Nuovo Cimento A 111 (11): 1233–1242
  11. Способ разложения сероводорода. Авторы патента: Старцев А.Н., Пармон В.Н., Ворошина О.В., Захаров И.И., Пашигрева А.В.
  12. Генераторы водорода для отопления дома.
  13. Водородная бомба у нас под ногами. Нейромир.
  14. Теория изначально гидридной Земли. Водородная дегазация и ее влияние на озоновый слой. Сывороткин В.Л., МГУ

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Adblock
detector