В чем проблема магнитного двигателя

Содержание
  1. Магнитные двигатели. Виды и устройство. Применение и работа
  2. Магнитные двигатели применяют другой подход. Необходимость в дополнительных источниках питания сводится к минимуму. Принцип работы легко объяснить «беличьим колесом». Для производства демонстративной модели не нужны специальные чертежи или прочностной расчет. Нужно взять постоянный магнит, чтобы его полюса находились на обеих плоскостях. Магнит будет главной конструкцией. К ней добавляется два барьера в виде колец (внешний и внутренний) из немагнитных материалов. Между кольцами располагают стальной шарик. В магнитном двигателе он станет ротором. Силами магнита шарик притянется к диску противоположным полюсом. Этот полюс не будет менять свое положение при движении.
  3. Магнитный двигатель: миф или реальность?
  4. Что такое магнитный двигатель?
  5. Конструктивные особенности
  6. Миф или всё же реальность?
  7. Можно ли сделать магнитный двигатель своими руками?
  8. Почему вечный двигатель невозможен?

Магнитные двигатели. Виды и устройство. Применение и работа

Магнитные двигатели (двигатели на постоянных магнитах) являются наиболее вероятной моделью «вечного двигателя». Еще в давние времена была высказана эта идея, но так никто его не создал. Многие устройства дают ученым возможность приблизиться к изобретению такого двигателя. Конструкции подобных устройств еще не доведены до практического результата. С этими устройствами связано много различных мифов.

Магнитные двигатели не расходуют энергию, являются агрегатом необычного типа. Силой, двигающей мотор, является свойство магнитных элементов. Электродвигатели также применяют магнитные свойства ферромагнетиков, но магниты приводятся в движение электрическим током. А это является противоречием основному принципиальному действию вечного двигателя. В двигателе на магнитах используется магнитное влияние на объекты. Под действием этих объектов начинается движение. Небольшими моделями таких двигателей стали аксессуары в офисах. На них двигаются постоянно шарики, плоскости. Но там для работы применены батарейки.

Ученый Тесла занимался серьезно проблемой образования магнитного двигателя. Его модель была выполнена из катушки, турбины, проводов для соединения объектов. В обмотку закладывался маленький магнит, захватывающий два витка катушки. Турбине давали небольшой толчок, раскручивали ее. Она начинала движение с большой скоростью. Такое движение называлось вечным. Двигатель Тесла на магнитах стал идеальной моделью вечного двигателя. Его недостатком стала необходимость начального задания скорости турбине.

По закону сохранения электропривод не может содержать более 100% КПД, энергия частично тратится на трение в двигателе. Такой вопрос должен решать магнитный двигатель, у которого постоянные магниты (роторный тип, линейный, униполярный). В нем осуществление механического движения элементов идет от взаимодействия магнитных сил.

Принцип работы

Многие инновационные магнитные двигатели применяют работу трансформации тока во вращение ротора, являющееся механическим движением. Вместе с ротором вращается вал привода. Это дает возможность утверждать, что всякий расчет не даст результата КПД равного 100%. Агрегат не получается автономным, он имеет зависимость. Такой же процесс можно увидеть в генераторе. В нем крутящий момент, который образуется от энергии движения, создает выработку электроэнергии на пластинах коллектора.

1 — Линия раздела магнитных силовых линий, замыкающихся через отверстие и внешнюю кромку кольцевого магнита
2 — Катящийся ротор (Шарик от подшипника)
3 — Немагнитное основание (Статор)
4 — Кольцевой постоянный магнит от громкоговорителя (Динамика)
5 — Плоские постоянные магниты (Защелки)
6 — Немагнитный корпус

Магнитные двигатели применяют другой подход. Необходимость в дополнительных источниках питания сводится к минимуму. Принцип работы легко объяснить «беличьим колесом». Для производства демонстративной модели не нужны специальные чертежи или прочностной расчет. Нужно взять постоянный магнит, чтобы его полюса находились на обеих плоскостях. Магнит будет главной конструкцией. К ней добавляется два барьера в виде колец (внешний и внутренний) из немагнитных материалов. Между кольцами располагают стальной шарик. В магнитном двигателе он станет ротором. Силами магнита шарик притянется к диску противоположным полюсом. Этот полюс не будет менять свое положение при движении.

Статор включает в себя пластину, изготовленную из экранируемого материала. На нее по траектории кольца закрепляют постоянные магниты. Полюса магнитов находятся перпендикулярно в виде диска и ротора. В итоге, при приближении статора к ротору на некоторое расстояние, появляется отталкивание и притяжение в магнитах поочередно. Оно создает момент, переходит во вращательное движение шарика по траектории кольца. Запуск и торможение осуществляется движением статора с магнитами. Такой метод магнитного двигателя действует, пока магнитные свойства магнитов будут сохраняться. Расчет делается относительно статора, шариков, управляющей цепи.

Читайте также:  Как будет работать двигатель при пониженном напряжении

На таком же принципе работают действующие магнитные двигатели. Самыми известными стали магнитные двигатели на тяге магнитов Тесла, Лазарева, Перендева, Джонсона, Минато. Так же известны двигатели на постоянных магнитах: цилиндровые, роторные, линейные, униполярные и т.д. У каждого двигателя своя технология изготовления, основанная на магнитных полях, образующихся вокруг магнитов. Вечных двигателей не бывает, так как постоянные магниты утрачивают свои свойства через несколько сотен лет.

Магнитный двигатель Тесла

Ученый исследователь Тесла стал одним из первых, кто изучал вопросы вечного двигателя. В науке его изобретение называется униполярным генератором. Сначала расчет такого устройства сделал Фарадей. Его образец не произвел стабильности работы и должного эффекта, не достиг необходимой цели, хотя принцип действия был сходным. Название «униполярный» дает понять, что по схеме модели проводник находится в цепи полюсов магнита.

По схеме, обнаруженной в патенте, видна конструкция из 2-х валов. На них помещены 2 пары магнитов. Они образуют отрицательное и положительное поля. Между магнитами находятся униполярные диски с бортами, которые применяются как образующие проводники. Два диска друг с другом имеют связь тонкой лентой из металла. Лента может использоваться для вращения диска.

Двигатель Минато

Этот тип двигателя также использует магнетическую энергию для самостоятельного движения и самовозбуждения. Образец двигателя разработан японским изобретателем Минато более 30 лет назад. Двигатель обладает высокой эффективностью, характеризуется бесшумной работой. Минато утверждал, что магнитный самовращающийся двигатель такого исполнения выдает КПД более 300%.

Ротор изготовлен в форме колеса или дискового элемента. На нем находятся магниты, расположенные под определенным углом. Во время приближения статора с мощным магнитом создается момент вращения, диск Минато вращается, применяет отторжение и сближение полюсов. Скорость вращения и крутящий момент мотора зависит от расстояния между ротором и статором. Напряжение мотора подается по цепи реле прерывателя.

Для предохранения от биения и импульсных движений при вращении диска применяют стабилизаторы, оптимизируют расход энергии управляющего электрического магнита. Негативной стороной можно назвать то, что нет данных по свойствам нагрузки, тяге, которые применяются реле управления. Также периодически необходимо производить намагничивание. Об этом Минато в своих расчетах не упоминал.

Двигатель Лазарева

Русский разработчик Лазарев сконструировал действующую простую модель двигателя, применяющего магнитную тягу. Роторный кольцар включает в себя резервуар с пористой перегородкой на две части. Эти половины между собой сообщаются трубкой. По этой трубке поступает поток жидкости из нижней камеры в верхнюю. Поры создают перетекание вниз за счет гравитации.

При расположении колеса с расположенными на лопастях магнитами под напором жидкости возникает постоянное магнитное поле, двигатель вращается. Схема двигателя Лазарева роторного типа применяется при разработке простых устройств с самовращением.

Двигатель Джонсона

Джонсон в своем изобретении применял энергию, которая генерируется потоком электронов. Эти электроны находятся в магнитах, образуют цепь питания двигателя. Статор двигателя соединяет в себе множество магнитов. Они располагаются в виде дорожки. Движение магнитов и их расположение зависит от конструкции агрегата Джонсона. Компоновка может быть роторной или линейной.

1 — Магниты якоря
2 — Форма якоря
3 — Полюса магнитов статора
4 — Кольцевая канавка
5 — Статор
6 — Резьбовое отверстие
7 — Вал
8 — Кольцевая втулка
9 — Основание

Магниты прикрепляются к особой пластине, обладающей большой магнитной проницаемостью. Одинаковые полюса магнитов статора поворачиваются в сторону ротора. Этот поворот создает отторжение и притяжение полюсов по очереди. Совместно с ними смещаются элементы ротора и статора между собой.

Джонсон организовал расчет воздушного промежутка между ротором и статором. Он дает возможность коррекции усилия и магнитной совокупности взаимодействия в направлении увеличения или снижения.

Магнитный двигатель Перендева

Двигатель самовращающейся модели Перендева так же является примером применения работы магнитных сил. Создатель этого мотора Брэди оформил патент и создал фирму еще до начала уголовного дела на него, организовал работу на поточной основе.

При анализе принципа работы, схемы, чертежей в патенте можно понять, что статор и ротор выполнены в форме внешнего кольца и диска. На них по траектории кольца располагают магниты. При этом соблюдают угол, определенный по центральной оси. Из-за взаимного действия поля магнитов образуется момент вращения, осуществляется их перемещение друг относительно друга. Цепь магнитов рассчитывается путем выяснения угла расхождения.

Читайте также:  Характеристики двигателя лада калина кросс
Синхронные магнитные двигатели

Главным видом электрических двигателей является синхронный вид. У него обороты вращения ротора и статора одинаковые. У простого электромагнитного двигателя эти две части имеют в составе обмотки на пластинах. Если изменить конструкцию якоря, вместо обмотки установить постоянные магниты, то получится оригинальная эффективная рабочая модель двигателя синхронного типа.

1 — Стержневая обмотка
2 — Секции сердечника ротора
3 — Опора подшипника
4 — Магниты
5 — Стальная пластина
6 — Ступица ротора
7 — Сердечник статора

Статор сделан по привычной конструкции магнитопровода из катушек и пластин. В них образуется магнитное поле вращения от электрического тока. Ротор образует постоянное поле, взаимодействующее с предыдущим, и образует момент вращения.

Нельзя забывать о том, что относительное нахождение якоря и статора имею возможность изменяться в зависимости от схемы двигателя. Например, якорь может быть сделан в форме наружной оболочки. Для запуска двигателя от сети питания применяется схема из магнитного пускателя и реле тепловой защиты.

Источник

Магнитный двигатель: миф или реальность?

В прошлом веке основной целью была масштабная электрификация, а сегодня практически каждый человек носит в кармане портативный компьютер, для размещения которого раньше потребовалось бы здание в несколько этажей высотой. Но всё же идея создания бестопливного двигателя с высоким КПД остаётся актуальной и по сей день. Возможно ли сделать магнитный двигатель? Какие его конструктивные особенности? Существуют экспериментальные модели? На все эти вопросы вы найдёте ответы далее в статье.

Что такое магнитный двигатель?

Что такое вечный двигатель? Фактически, это механизм, КПД которого составляет 100%. К сожалению, на практике это выглядит несколько по-иному, ведь в работу вмешивается слишком много физических явлений, таких как сила трения и т.д. Со временем составные части любого механизма изнашиваются и выходят из строя, соответственно, требуют замены.

Магнитный двигатель не исключение, он обладает интересной, обоснованной с технической точки зрения конструкцией . Движение здесь обеспечивают постоянные (не электрические) магниты и подвижные металлические поверхности. Получается, что магнитному двигателю достаточно только задать вращение, и в случае необходимости обеспечить остановку.

Конструктивные особенности

Из каких элементов состоит магнитный двигатель:

  1. Статор , выполненный как один постоянный магнит на пружинной основе.
  2. Ротор . Диск, обязательно выполненный из материала, который не подвержен намагничиванию. По поверхности диски расположены небольшие постоянные магниты определённых размеров. Все магниты на диске необходимо разместить в определённой форме и последовательности.
  3. Балласт . В магнитном двигателе это отдельный элемент, он обеспечивает разгон ротора и его постоянное вращение при работе.

Это пример самой простой конструкции магнитного двигателя. Мастера вроде Николы Тесла или Василия Шкондина создавали куда более изощрённые модели, а многие из конструкторов в данной сфере электротехники даже получили патенты на свои изделия.

Миф или всё же реальность?

Магнитный двигатель – это реальность . Конструкторы Игорь Свитницкий и Говард Джонсон это доказали, создав моторы, которые работали за счёт постоянного магнитного потока. Но решить основную проблему – увеличить КПД до положенных 100%, они, к сожалению, не смогли.

Поэтому магнитные двигатели существуют, а теория их массового производства вполне реальна. А вот трактовка магнитного мотора как вечного двигателя с совершенным КПД – это вымысел, незаслуживающий внимания. Вечных двигателей не существует, это доказано, но всё же не мешает появляться на свет «конструкторам», желающим данный факт оспорить.

Можно ли сделать магнитный двигатель своими руками?

Вполне возможно. Для примера можно взять известный магнитный двигатель Василия Шкондина, который применяется в вело- и мотопроизводстве по сей день .

Конечно, для изготовления такого мотора потребуется специальный инструмент и привлечение специалистов узкого профиля – токарей, перемотчиков и т.д. Но задача вполне выполнима.

P.S. С ещё большим количеством идей реализации магнитных двигателей вы можете ознакомиться в нашем видео:

Источник

Почему вечный двигатель невозможен?

В ходе истории не раз возникали идеи двигателей, которые давали бы больше энергии, чем получали. Действительно, если бы удалось придумать такой двигатель очень большая часть проблем человечества могла бы быть решена. Однако все попытки создать вечный двигатель оказались безуспешными. В этой статье я рассмотрю несколько наиболее характерных моделей вечных двигателей, а также фундаментальные причины делающие вечные двигатели в принципе невозможными.

Читайте также:  Ваз 2115 ремонт схема двигателя

Впервые вечный двигатель был предложен в 12-м веке, в Индии математиком Бхаскарой Вторым. Он предложил сделать внутри колеса особые емкости со ртутью.

По его идее в одной части колеса переливающаяся ртуть всегда будет перевешивать ртуть во второй половине колеса и тем самым колесо будет постоянно вращаться.

Идею Бхаскары II не раз модифицировали, например заменяя ртуть шариками, рычагами, гирьками и т.д. однако суть оставалась той же самой. Вечное движение должно было достигаться постоянным неравновесием двух частей колеса.

Однако все подобные «вечные двигатели» в итоге оказывались неработоспособными. Проблема заключалась в том, что при неравном весе различных частей колеса смещался и его центр тяжести, что в итоге в какой-то из моментов приводило к остановке колеса в положении равновесия относительно нового центра тяжести.

Принципиально иным является идея вечного двигателя основанного на магнитах, как изображено на рисунке выше. Согласно идее его авторов магнит находящийся наверху будет тащить металлический шарик вверх по горке, затем шарик провалится в отверстие, скатится вниз и вновь будет притянут по горке вверх. И так до бесконечности.

В реальности же такой двигатель также неработоспособен. Расчеты показывающие его неработоспособность выходят за рамки данной статьи, скажу только что существует два основных сценарий. Либо магнит не сможет тащить шарик вверх, а если все же сможет, то шарик не провалится в отверстие, а будет притянут к магниту.

Разоблачение магнитного «вечного двигателя»

Еще в последнее время на ютубе в последнее время появилось множество видео с другой версией магнитного вечного двигателя. На лопастях вентилятора закреплялись кусочки металла и при приближении магнита, на видео четко видно, что лопасти начинают быстро вращаться.

Такие двигатели производят впечатление, но являются простым обманом: под кромкой вентилятора спрятана батарейка, а приближение магнита всего-лишь замыкает контакт между батарейкой и электродвигателем вентилятора.

Такие «вечные двигатели» относят к вечным двигателем первого рода . Это такие двигатели, которые не тратят энергию для совершения работы. Все они не могут быть работоспособными из-за того, что их принцип действия противоречит фундаментальному закону физики, а именно закону сохранения энергии .

Любой такой двигатель может работать только если имеет внешний источник энергии. Если где-то демонстрируется работающий «вечный двигатель» значит в нем, как в случае с вентилятором где-то спрятана батарейка или иной источник энергии.

Существуют также так называемые вечные двигатели второго рода . Их суть состоит в том, что такие двигатели должны использовать всю производимую работу для дальнейшего функционирования двигателя. Иными словами такой двигатель сам себя питает и имеет 100% коэффициент полезного действия.

Такие двигатели действительно не нарушают закон сохранения энергии. Но они противоречат другому не менее фундаментальному физическому закону — второму началу термодинамики.

Проблема в том, что невозможно создать такой двигатель, который бы преобразовывал всю энергию в работу без потерь. Все равно часть энергии будет тратиться на процессы внутри двигателя (хотя бы например из-за трения частей двигателя друг о друга).

Я сам в детстве пытался построить такой «вечный двигатель» по следующей схеме: аккумулятор приводит в действие электрический двигатель, электрических двигатель вращает ручку генератора, а генератор заряжает аккумулятор. Разумеется у меня ничего не вышло, так как потери энергии были слишком велики.

В настоящий момент практически ни в одной стране мира не рассматриваются новые заявки о создании вечных двигателей, так как давно установлено, что такие устройства теоретически невозможно и вопрос всегда лишь в том, где ошибся автор.

В то же время прогресс физики и химии особенно в последние годы просто огромен и существуют различные перспективные разработки, могущие в будущем привести к появлению источников «дармовой» энергии (термоядерный синтез, энергия вакуума и д.р.). Однако надо понимать, что эти устройства не будут «вечными двигателями» в классическом понимании этого слова и все равно будут получать энергию из внешних источников.

Источник

Adblock
detector