- Турбореактивный двигатель — плюсы и минусы
- Краткий принцип работы реактивных движков
- Какими достоинствами наделены турбореактивные двигатели
- С какими недостатками ведут борьбу конструкторы
- Заключение
- Плюсы и минусы реактивного двигателя
- Реактивный двигатель: принцип действия и типы
- Преимущества реактивного двигателя
- Недостатки реактивного двигателя
- Подведем итоги
- Как устроен реактивный двигатель? Что дает ему такую мощность?
- Устройство
Турбореактивный двигатель — плюсы и минусы
Вид в небе полета самолетов, завораживает наблюдателей . Человеку, далекому от сложных формул и сил, толкающих в воздухе многотонную машину с огромной скоростью, не всегда понятны тонкости аэродинамики, физические процессы. Воздушные транспортные средства стали называть «реактивными» из-за турбореактивного двигателя (ТРД), который создали инженеры после войны. Простых людей интересует, есть ли в них недостатки и, какими плюсами наделены мощные моторы.
Краткий принцип работы реактивных движков
Экстремальные условия военного времени показали, что самолетам не хватает скорости, маневренности . Было много проблем с мощностью двигателей. Конструкторы мирного периода, принялись модернизировать в первую очередь силовой агрегат . Они поняли, что без хороших движков не осуществить мечту человечества – покорение космоса.
Скорость механическому телу придает смесь , когда она попадает в специальную камеру, сжигается. В результате сгорания образуются газы , давление выталкивает их наружу, выход происходит через круглый с поперечным сечением канал – сопло . Здесь и создается огромная сила , которая толкает двигатель с самолетом или ракетой в противоположном направлении от газовых выхлопов. Наглядным примером служит обычный воздушный шар . Если его отпустить надутый, но не завязанный, за счет вылетающего воздуха он начинает быстро двигаться. Инженеры придумали как управлять такими движениями.
Принцип работы движков в ракетах и самолетах один, они должны снабжаться кислородом , за счет которого топливо сжигается. В первом случае воздушные корабли в полет отправляются, имея в запасе химический элемент, во втором – поглощают из атмосферы. В компрессоре воздух сжимается и попадает в камеру сгорания.
Когда газ проходит через турбины, которые закреплены в конце сопла, они начинают вращаться . Специальные приспособления придают направление для перехода на следующую ступень и ускорения круговых движений. Газом, освобожденным из канала, создается реактивная сила . В самолетах для работы движка достаточно топлива, реактора и сопла. В ракетах турбины состоят из нескольких ступеней с лопатками, прикрепленными к общему валу, направляющими продукт сгорания.
Какими достоинствами наделены турбореактивные двигатели
Активно развиваются технологии, появляются новые разработки, но двигатели с силой тяги, где горючее, сгорая преобразует внутреннюю энергию в кинетическую, остаются в производстве из-за множества положительных качеств . На этом принципе созданы более совершенные модели, они по-прежнему действуют в соответствии с законом сохранения импульсов. К достоинствам турбореактивных силовых агрегатов относятся:
- Простая конструктивная структура . Где основной составной частью служит реактор, здесь происходит сгорание топлива, создается высокая тепловая энергия, с её помощью передается аппарату реактивная тяга.
- Мало подвижных элементов . Усиливается функциональность дополнительными механизмами, они принудительно нагнетают воздух в простую по конструкции камеру сгорания. В состав воздухосборника входит, крутящийся винт и лопасти.
- Большая мощность . Удельным импульсом характеризуется уровень ускорения, передаваемого воздушным кораблям для развития скорости.
- Высокий КПД . Этот показатель намного выше по сравнению с другими моделями двигателей.
- Тягой можно управлять во время космического полета . Изменяя расход горючего, пилот снижает или увеличивает скорость, маневрирует, отключает или запускает силовой агрегат в автономном режиме, без взаимодействия с другими механизмами.
- Работа осуществляется в условиях низкого воздушного давления , а в безвоздушном пространстве без него, что является первой необходимостью для ракет.
Турбореактивные двигатели отлично зарекомендовали себя в самых трудных ситуациях.
С какими недостатками ведут борьбу конструкторы
Нет механизмов, совершенных во всем . Возможно, это является причиной, почему человек до сих пор не посетил соседние планеты. Древние ученые мечтали о создании вечного двигателя, современные конструкторы пытаются избавить силовые агрегаты от недостатков. К ним принадлежат:
- Шумы, переносимые с трудом человеческим ухом . Когда реактивный самолет взлетает, то создается грохот, приравненный к 120 дБ . Возле космических аппаратов не стоят даже испытатели, чтобы не подвергать организм контузии. Инженеры работают, но пока безуспешно над подобной проблемой.
- Расход горючего . Двигатели много потребляют топлива. Для вывода ракеты на орбиту массой 4000 тонн , необходимо установить не меньше 5 силовых агрегатов. Они создают скорость приблизительно 4 км/сек. Газов за один момент выходит около 10 т. Мгновенно сгорает по цистерне ракетного топлива.
- Ограничение ресурсов . Во время полета ракет, какой бы вид горючего не использовался, каждое выделяет определенный уровень энергии. Но его мало, чтобы покорять Галактику. Сейчас ведутся ядерные разработки, ученые мечтают с помощью этого перспективного направления, открыть туристические путешествия между планетами.
- Быстрый расход топлива . На длительные полеты необходим большой запас энергоносителей. Горючее весит больше чем сами самолеты или космические корабли.
- Летательные аппараты огромные по размерам и массе.
Если конструкторы смогли придумать аппарат, чтобы доставить астронавтов на Луну, возможно, скоро появится движок настолько мощный и компактный, который позволит посетить Марс.
Заключение
Турбореактивные двигатели используют не только в ракетах и самолетах . Развитие технологий не знает границ, движки такого типа стали внедрять в область:
- Автомобилестроения.
- Железнодорожного транспорта.
Силовые агрегаты с успехом зарекомендовали себя на ледоколах и гоночных болидах . Многое, что казалось фантастикой в прошлом веке, стало сейчас реальностью и обыденным явлением. Пока что, имеющиеся в наличии моторы, заставляют летать самолеты быстро и высоко. А сила тяги реактивных движков не зависит от точек опор, среды и иных тел.
Возможно, мечты нашего великого конструктора С. Королева исполнят его последователи. Ученые откроют новый вид топлива, разработают к нему двигатель, который сможет доставить путешественников на просторы Галактики, и вернуть их на Землю.
Плюсы и минусы реактивного двигателя
1939 год, Германия — впервые в небо поднялся самолёт, работающий на реактивном двигателе. Он превосходил по скорости полета истребители того времени. Но потреблял больше топлива и требовал длинной взлетно-посадочной полосы. Несмотря на недостатки, это был прорыв в авиации.
Сейчас этот усовершенствованный движитель применяется для запуска ракет, космических аппаратов, гражданских и военных самолётов. Рассмотрим его плюсы и минусы более подробно.
Реактивный двигатель: принцип действия и типы
Двигатель, в котором создается сила тяги за счет преобразования внутренней энергии топлива в кинетическую энергию рабочего тела, называется реактивным.
Рабочее тело с большой скоростью выходит из сопла, сообщая ему реактивную силу, направленную в противоположную сторону. Действуя согласно закону сохранения импульса, продукт сгорания топлива и двигатель перемещаются относительно друг друга в противоположных направлениях.
Если надуть воздушный шарик и, не завязывая, отпустить его, то получится простейший реактивный двигатель. Рабочее тело – накачанный в шарик воздух – будет вырываться наружу, заставляя шарик перемещаться в противоположном направлении.
Для работы реактивного двигателя нужны составляющие:
- Топливо.
- Камера сгорания (реактор), в которой внутренняя энергия топлива преобразуется в тепловую энергию рабочего тела.
- Сопла, из которых под давлением вырываются наружу продукты сгорания топлива, сообщая двигателю реактивную тягу.
Бывает двух типов:
- Воздушно-реактивный – тепловая энергия образуется при сгорании топлива в присутствии кислорода.
- Ракетный – работающий в безвоздушном пространстве.
Преимущества реактивного двигателя
Перед остальными видами такие:
- Простота конструкции. Для создания простейшего реактивного двигателя достаточно камеры сгорания и сопла. В камере сгорания образуется рабочее тело с высокой тепловой энергией, которое проходя через сопло передает аппарату реактивную тягу.
- Малое количество подвижных деталей. Для повышения эффективности работы воздушно-реактивного двигателя, созданы дополнительные механизмы. Они обеспечивают принудительное нагнетание воздуха в камеру сгорания. Их конструкция проста. Обычно это воздухозаборник с крутящимся винтом и лопастями. У ракетного таковые отсутствуют вообще.
- Высокие удельный импульс и мощность. Удельный импульс характеризует насколько большое ускорение передается самолёту или ракете рабочим телом, что позволяет развить хорошую скорость полета. Сравнение мощностей различных типов двигателей наглядно демонстрирует преимущества реактивного: карбюраторный ДВС – 200 кВт; дизельный ДВС – 2200 кВТ.; атомный – 55 000 кВт; турбинный паровой — 300 000 кВт; реактивный – 30 000 000 кВт.
- КПД достигает 47-60%. Этот показатель гораздо выше, чем у двигателей внутреннего сгорания (25-35%) или турбинного (27-30%). Это значит, что реактивный совершает больше полезной работы.
- Управляемость с помощью тяги во время космических полетов. Меняя расход топлива, можно уменьшать или увеличивать скорость полета, делать манёвры и вовсе отключать двигатель, а затем снова его запускать. При этом ему не требуется взаимодействовать с другими телами.
- Работает при низком давлении воздуха или вовсе без него в условиях безвоздушного пространства. Пока ещё не создан механизм, который зарекомендовал себя лучше в условиях космоса.
Недостатки реактивного двигателя
- Создает сильный шум при работе. При взлете реактивного самолёта создается шум до 120 децибел. Для человеческого уха это значение близко к болевому порогу. Если стоять на расстоянии 100 метров от места взлета космического корабля, можно получить контузию. Ведь уровень шума достигает 150 децибел. Ученым пока не удается подавить шум от реактивного движителя или решить эту проблему иным способом.
- Расходует большой объем топлива. Он невероятно прожорлив. Чтобы вывести на орбиту ракетную систему с исходным весом 3000 тонн, необходима установка пяти таких двигателей. Они придают рабочему телу скорость 3 км/с. При этом высвобождается 10 тонн отработанных газов в секунду. За 4 секунды в камерах без остатка сгорает одна цистерна ракетного топлива.
- Ограниченный ресурс для космических полетов. Все виды топлива, которые применяют для ракет, выделяют ограниченное количество энергии. Этого недостаточно для совершения полетов в пределах Галактики и даже между планетами Солнечной системы. Перспективным направлением считается использование ядерной энергии.
- Большой вес и размер летательных аппаратов. Перед учеными, изучающими космос, стоят колоссальные задачи. Одна из главных – создание летательного аппарата для межпланетных и межзвездных перелетов. Они научились выводить на земную орбиту ракеты, спутники, достигли Луны. Для дальних полетов использовать реактивный двигатель невыгодно и нецелесообразно. Ученые подчитали, что для полета ракеты на Марс, ее стартовый вес должен составлять – 30 000 тонн, а на Юпитер – 250 000 тонн. Соответственно, увеличатся и размеры летательных аппаратов.
- Топливо расходуется быстро. Для длительного полета необходим большой объем энергоносителя. Емкости с горючим составляют значительную часть от массы самолёта или космического корабля.
Подведем итоги
Реактивный двигатель — это мощный механизм, без которого не может обойтись современные самолётостроение и ракетостроение. Он заставил летать самолёты в 1,5 раза быстрее и выше, чем поршневой мотор. Его сила тяги не зависит от наличия окружающей среды, точки опоры или иного тела.
Конструкция позволяет управлять ракетами в безвоздушном пространстве. Это делает его крайне необходимым для исследования космоса.
Чем выше его скорость летательного аппарата, тем большую полезную работу совершает двигатель. При меньшей скорости – полезная работа меньше.
Реактивный двигатель внедряют в автомобилестроении, строительстве поездов, для гоночных болидов, снегоуборочных машин, ледоколов. Компания «Rolls Royce» создала мотоцикл с газореактивным мотором.
Как устроен реактивный двигатель? Что дает ему такую мощность?
На сегодняшний день этот вид двигателей широко используется в наши дни. Самолеты, ракеты, необычные транспортные средства (летающий костюм железного человека) — все это двигается с помощью газотурбинных двигателей. Кстати, об этом костюме у меня есть статья https://zen.yandex.ru/media/id/5cf58e799511bd00afb4dda1/reaktivnyi-kostium-jeleznogo-cheloveka-5cf62d01babd4000b0927efb
Как же он устроен? Принцип работы такого двигателя прост, но расчеты и конструкция крайне сложны. Проще говоря жидкий кислород, засасываясь в турбину, смешивается с топливом, которое сгорает в камере сгорания и в конце турбины (сопло), образует реактивную струю, толкающую тело.
Устройство
состоит реактивный двигатель из следующих элементов:
— камера для сгорания;
Компрессор состоит из нескольких турбин. Задача компрессора — это всасывать, а затем сживать воздух, который попал через лопасти. За счет сжатия повышается температура и давление. Часть такого сжатого воздуха попадает в камеру сгорания. В ней нагретый воздух смешивается с топливом (керосин) и в результате воспламеняется. Этот этап придает колоссальную тепловую энергию. После смесь, расширяясь, выходит из камеры сгорания на огромной скорости.
Далее этот мощный поток движется еще по одной турбине (задней), лопасти которой вращаются газами. Эта турбина, соединяясь с компрессором в передней части, приводит агрегат в движение Воздух нагретый до высоких температур выходит через выпускную систему (сопло). Высокая температура продолжает расти за счет эффекта дросселирования. Прошу заметить, что корпус турбины состоит и двух оболочек. В первой происходит весь процесс нагрева газа, а во второй происходит охлаждение за счет вентилятора.