В чем особенности конструкции поршней карбюраторных и дизельных двигателей

Отличительные особенности дизельного и карбюраторного двигателей

Двигатель внутреннего сгорания на современных автомобилях используется как силовая установка. Исходя из применяемого топлива, двигатели делят на такие виды, как: газовые, дизельные и карбюраторные.

Карбюраторные двигатели – это устройства, которые работают на бензине (жидком топливе), с использованием принудительного зажигания. Перед тем как быть поданным в цилиндры двигателя, топливо смешивается с воздухом в необходимых пропорциях при помощи карбюратора.

Дизельные двигатели – это механизмы, которые работают на дизельном топливе (жидком топливе), с помощью воспламенения от сжатия. Топливо подается форсункой, а внутри цилиндра происходит смешивание с воздухом.

Газовые двигатели – это двигатели, работающие на пропано-бутановом газе, зажигаются они принудительно. газ смешивается с воздухом в карбюраторе, сразу перед подачей в цилиндры двигателя. Подобные двигатели только недавно стали размещаться на автомобилях, поэтому мы их затрагивать не будем.

Карбюраторные поршневые двигатели.

К основным системам и механизмам поршневого карбюраторного двигателя относятся:

  • система смазки;
  • система охлаждения,
  • система зажигания,
  • система выпуска отработавших газов,
  • система питания,
  • газораспределительный механизм,
  • кривошипно-шатунный механизм.

Карбюраторный одноцилиндровый двигатель внутреннего сгорания состоит из таких элементов как:

  • свеча зажигания;
  • клапан;
  • рычаг;
  • кулачок распределительного вала;
  • распределительный вал;
  • кривошип;
  • маховик;
  • коленчатый вал;
  • шатун;
  • поршневой палец;
  • поршневые кольца;
  • поршень;
  • цилиндр;
  • головка цилиндра.

Для начала стоит взять простой карбюраторный двигатель с одним цилиндром и досконально разобрать принцип его работы. И так, рассмотрим процессы, которые в нем протекают, и поймем, откуда берется тот самый крутящий момент, который приводит в движение ведущие колеса машины.

Основная часть карбюраторного двигателя с одним цилиндром – это именно цилиндр со съемной головкой укрепленной на нем. Если начать сравнивать элементы автомобиля с предметами быта, то такой цилиндр походит на обычный стакан, который перевернули верх дном.

Внутри цилиндра помещен поршень, так называемый еще один «стакан». В специальных канавках на поршне находится поршневое масло. Именно поршни скользят по внутреннему «зеркалу» цилиндра, они же дают газу, который образовался в процессе работы, возможность прорываться вниз. В тоже время препятствуют попаданию масла вверх установленные кольца.

При помощи шатуна и пальца, поршень соединен с кривошипом коленвала, который крутится в подшипниках и установлен в картере двигателя. В конце коленвала закреплен массивный маховик.

Цикл работы карбюраторного четырехтактного двигателя.

Главные отличительные особенности дизельного и карбюраторного двигателей – это рабочий цикл. Рабочий цикл – это последовательность процессов, которые периодически повторяются в каждом из цилиндров.

Рабочий процесс, который происходит в цилиндре за одни ход поршня, называется — такт. Исходят из этого, по числу таков (которые составляют рабочий цикл) все двигатели можно разделить на два вида:

  • двухтактные — рабочий цикл в которых совершается за два поршневых хода.
  • четырехтактные — рабочий цикл в которых совершается за четыре поршневых хода,

На легковых автомобилях, которые производятся в нашей стране, чаще всего применяются четырехтактные двигатели. Двухтактные – это привилегия моторных лодок и мотоциклов. О принципах работы двигателей моторных лодок мы сейчас говорить не будем, лучше разберемся с автомобильным двигателем и четырьмя его тактами.

В четырехтактном двигателе рабочий цикл состоит из следующих тактов:

  • впускается горючая смесь,
  • сжимается рабочая смесь,
  • непосредственно рабочий ход,
  • выпускаются отработавшие газы.

А теперь ответьте на вопрос, кто из вас заметил, что полезная работа, совершаемая двигателем, будет производиться, только в течение одного такта — рабочего хода! Остальные же три такта называется подготовительным, совершаются они за счет энергии маховика, который вращается по инерции.

Коленвал с маховиков состоит из:

  • противовеса;
  • коренной (опорной) шейки;
  • шатунной шейки;
  • маховика с зубчатым венцом;
  • коленчатого вала двигателя.

Маховик – это большой металлический диск, крепящийся к коленвалу на двигателе. В процессе рабочего хода, поршень через кривошип и шатун, начинает раскручивать коленвал двигателя, передающий запас инерции маховику.

Дизельные двигатели.

Основной особенностью дизельного двигателя является то, что топливо в него подается либо насос-форсункой, либо форсункой под болт непосредственно в цилиндр двигателя на конечном этапе сжатия. Топливо надо подавать под большим давлением из-за того, что у подобных двигателей намного выше степень сжатия, если сравнивать их с карбюраторными движками. Из-за того, что температура и давление в цилиндре дизеля очень велики, топливо воспламеняется само. А это может означать только одно – не нужен искусственный поджег. Поэтому в дизельных двигателях нет, не только свеч зажигания, а и всей системы.

Цикл работы дизельного четырехтактного двигателя.

Первым этапом является впрыск, который нужен, для того чтобы наполнить цилиндр двигателя только лишь воздухом. Тогда, когда поршень движется от верхней к нижней мертвой точке, происходит процесс, который всасывает воздух через открытый впускной клапан.

Читайте также:  Тяжело крутит стартер при запуске двигателя ваз 2107

Вторым таком выступит подготовка к самовоспламенению дизельного топлива. Когда поршень движется к мертвой точке, он сжимает воздух примерно в 20 раз (в карбюраторах поршень сжимает воздух в два раза слабее) в результате чего температура повышается до 500 градусов, а давление достигает 40 кг/см 2 .

Третий такт – рабочий ход. Нужен для того чтобы преобразовать энергию сгораемого топлива в механический порыв.

Кода такт сжатия закончен, в камеру сгорания подается под давлением топливо, которое из-за высокой температуры воспламеняется само.

Когда дизельное топливо сгорает (происходит взрыв), это вызывает увеличение давления и расширение. В результате чего появляется усилие, перемещающие поршень в нижней мертвой точке, через шатун прокачивается коленвал. Давление во время рабочего хода в цилиндре может достичь 100 кг/см 2 , температура в свою очередь превысить 2000 о С.

Четвертый такт – отработанные газы выпускаются и освобождают цилиндр. От нижней мертвой точки поднимается поршень, достигая верхней мертвой точки. Выбрасывая отработанные газы через открытый выпускной клапан. Когда происходит движение поршня вниз, то тот засасывает воздух, чем начинается новый рабочий цикл.

Также отличительной особенностью дизельного и карбюраторного двигателей можно назвать то, что в дизельном двигателе намного выше нагрузки, на все устройства и механизмы. Что, несомненно, приводит к увеличению его размеров, массы и стоимости. Преимущества дизелей при этом на лицо: топлива расходуется меньше, нет системы зажигания, меньше причин поломок.

Источник

Устройство автомобилей

Подвижные детали КШМ

Поршневая группа

Поршневая группа образует подвижную стенку рабочего объема цилиндра. Именно перемещение этой «стенки», т. е. поршня, является показателем работы, выполненной сгоревшими и расширяющимися газами.
Поршневая группа кривошипно-шатунного механизма включает в себя поршень, поршневые кольца (компрессионные и маслосъемные), поршневой палец и фиксирующие его детали. Иногда поршневую группу рассматривают вместе с цилиндром, и называют цилиндропоршневой группой.

Поршень

Требования, предъявляемые к конструкции поршня

Поршень воспринимает силу давления газов и передает ее через поршневой палец шатуну. При этом он совершает прямолинейное возвратно-поступательное движение.

Условия, в которых работает поршень:

  • высокое давление газов (3,5…5,5 МПа для бензиновых, и 6,0…15,0 МПа для дизельных двигателей);
  • контакт с горячими газами (до 2600 ˚С);
  • движение с переменой направления и скорости.

Возвратно-поступательное движение поршня вызывает значительные инерционные нагрузки в зонах прохода мертвых точек, где поршень изменяет направление движения на противоположное. Инерционные силы зависят от скорости перемещения поршня и его массы.

Поршень воспринимает значительные усилия: более 40 кН в бензиновых двигателях, и 20 кН – в дизелях. Контакт с горячими газами вызывает нагрев центральной части поршня до температуры 300…350 ˚С. Сильный нагрев поршня опасен возможностью заклинивания в цилиндре из-за температурного расширения, и даже прогоранием днища поршня.

Перемещение поршня сопровождается повышенным трением и, как следствие, изнашиванием его поверхности и поверхности цилиндра (гильзы). Во время движения поршня от верхней мертвой точки к нижней и обратно сила давления поверхности поршня на поверхность цилиндра (гильзы) изменяется и по величине, и по направлению в зависимости от такта, протекающего в цилиндре.

Максимальное давление поршень оказывает на стенку цилиндра при такте рабочего хода, в момент, когда шатун начинает отклоняться от оси поршня. При этом сила давления газов, передаваемая поршнем шатуну, вызывает реактивную силу в поршневом пальце, который в данном случае является цилиндрическим шарниром. Эта реакция направлена от поршневого пальца вдоль линии шатуна, и может быть разложена на две составляющие – одна направлена вдоль оси поршня, вторая (боковая сила) перпендикулярна ей и направлена по нормали к поверхности цилиндра.

Именно эта (боковая) сила и вызывает значительное трение между поверхностями поршня и цилиндра (гильзы), приводящее к их износу, дополнительному нагреву деталей и снижению КПД из-за потерь энергии.

Попытки уменьшить силы трения между поршнем и стенками цилиндра осложняются тем, что между цилиндром и поршнем необходим минимальный зазор, обеспечивающий полную герметизацию рабочей полости с целью не допустить прорыв газов, а также попадание масла в рабочее пространство цилиндра. Величина зазора между поршнем и поверхностью цилиндра лимитируется тепловым расширением деталей. Если его сделать слишком малым, в соответствии с требованиями герметичности, то возможно заклинивание поршня в цилиндре из-за теплового расширения.

При изменении направления движения поршня и процессов (тактов), протекающих в цилиндре, сила трения поршня о стенки цилиндра меняет характер – поршень прижимается к противоположной стенке цилиндра, при этом в зоне перехода мертвых точек поршень совершает удары по цилиндру из-за резкого изменения величины и направления нагрузки.

Конструкторам, при разработке двигателей, приходится решать комплекс проблем, связанных с описанными выше условиями работы деталей цилиндропоршневой группы:

  • высокими тепловыми нагрузками, вызывающими температурное расширение и коррозию металлов деталей КШМ;
  • колоссальным давлением и инерционными нагрузками, способным разрушить детали и их соединения;
  • значительными силами трения, вызывающими дополнительный нагрев, износ и потери энергии.
Читайте также:  Как снять коробку на митсубиси галант двигатель 4g63

Исходя из этого, к конструкции поршня предъявляются следующие требования:

  • достаточная жесткость, позволяющая выдерживать силовые нагрузки;
  • тепловая стойкость и минимальные температурные деформации;
  • минимальная масса для снижения инерционных нагрузок, при этом масса поршней в многоцилиндровых двигателях должна быть одинаковой;
  • обеспечение высокой степени герметизации рабочей полости цилиндра;
  • минимальное трение о стенки цилиндров;
  • высокая долговечность, поскольку замена поршней связана с трудоемкими ремонтными операциями.

Особенности конструкции поршня

Поршни современных автомобильных двигателей имеют сложную пространственную форму, которая обусловлена различными факторами и условиями, в которых работает эта ответственная деталь. Многие элементы и особенности формы поршня не заметны невооруженным глазом, поскольку отклонения от цилиндричности и симметрии минимальны, тем не менее, они присутствуют.
Рассмотрим подробнее – как устроен поршень двигателя внутреннего сгорания, и на какие хитрости приходится идти конструкторам, чтобы обеспечить выполнение требований, изложенных выше.

Поршень двигателя внутреннего сгорания состоит из верхней части – головки и нижней – юбки.

Верхняя часть головки поршня – днище непосредственно воспринимает усилия со стороны рабочих газов. В бензиновых двигателях днище поршня обычно делают плоским. В поршневых днищах дизелей часто выполняют камеру сгорания.

Днище поршня представляет собой массивный диск, который соединяется с помощью ребер или стоек с приливами, имеющими отверстия для поршневого пальца – бобышками. Внутренняя поверхность поршня выполняется в виде арки, что обеспечивает необходимую жесткость и теплоотвод.

На боковой поверхности поршня прорезаны канавки для поршневых колец. Число поршневых колец зависит от давления газов и средней скорости перемещения поршня (т. е. частоты вращения коленчатого вала двигателя) – чем меньше средняя скорость поршня, тем больше требуется колец.
В современных двигателях, наряду с ростом частоты вращения коленчатого вала, наблюдается тенденция к сокращению числа компрессионных колец на поршнях. Это обусловлено необходимостью уменьшения массы поршня с целью снижения инерционных нагрузок, а также уменьшения сил трения, отнимающих существенную долю мощности двигателя. При этом возможность прорыва газов в картер высокооборотистого двигателя считается менее актуальной проблемой. Поэтому в двигателях современных легковых и гоночных автомобилей можно встретить конструкции с одним компрессионным кольцом на поршне, а сами поршни имеют укороченную юбку.

Кроме компрессионных колец на поршне устанавливают одно или два маслосъемных кольца. Канавки, выполненные в поршне под маслосъемные кольца, имеют дренажные отверстия для отвода моторного масла во внутреннюю полость поршня при снятии его кольцом с поверхности цилиндра (гильзы). Это масло обычно используется для охлаждения внутренней поверхности днища и юбки поршня, а затем стекает в поддон картера.

Форма днища поршня зависит от типа двигателя, способа смесеобразования и формы камеры сгорания. Наиболее распространена плоская форма днища, хотя встречаются выпуклая и вогнутая. В некоторых случаях в днище поршня выполняют углубления для тарелок клапанов при расположении поршня в верхней мертвой точке (ВМТ). Как упоминалось выше, в днищах поршней дизельных двигателей нередко выполняют камеры сгорания, форма которых может различной.

Нижняя часть поршня – юбка направляет поршень в прямолинейном движении, при этом она передает стенке цилиндра боковое усилие, величина которого зависит от положения поршня и процессов, протекающих в рабочей полости цилиндра. Величина бокового усилия, передаваемого юбкой поршня, значительно меньше максимального усилия, воспринимаемого днищем со стороны газов, поэтому юбка выполняется относительно тонкостенной.

В нижней части юбки у дизелей часто устанавливают второе маслосъемное кольцо, что позволяет улучшить смазывание цилиндра и уменьшить вероятность попадания масла в рабочую полость цилиндра. Для уменьшения массы поршня и сил трения ненагруженные части юбки срезают по диаметру и укорачивают по высоте. Внутри юбки обычно выполняются технологические приливы, которые используются для подгонки поршней по массе.

Конструкция и размеры поршней зависят главным образом от быстроходности двигателя, а также от величины и скорости нарастания давления газов. Так, поршни быстроходных бензиновых двигателей максимально облегчены, а поршни дизелей имеют более массивную и жесткую конструкцию.

В момент перехода поршня через ВМТ изменяется направление действия боковой силы, которая является одной из составляющих силы давления газов на поршень. В результате поршень перемещается от одной стенки цилиндра к другой – происходит перекладка поршня . Это вызывает удар поршня о стенку цилиндра, сопровождающийся характерным стуком. Чтобы уменьшить это вредное явление поршневые пальцы смещают на 2…3 мм в сторону действия максимальной боковой силы; при этом боковая сила давления поршня на цилиндр значительно уменьшается. Такое смещение поршневого пальца называется дезаксажем .
Применение в конструкции поршня дезаксажа требует соблюдения правил монтажа КШМ — поршень должен устанавливаться строго по меткам, указывающим, где передняя часть (обычно это стрелка на днище).

Читайте также:  Как заменить лобовину на двигателе ниссан

Оригинальное решение, призванное снизить воздействие боковой силы, применили конструкторы двигателей фирмы «Фольксваген». Днище поршня в таких двигателях выполнено не под прямым углом к оси цилиндра, а немного скошено. По мнению конструкторов, это позволяет оптимальнее распределить нагрузку на поршень, и улучшить процесс смесеобразования в цилиндре при тактах впуска и сжатия.

Для того, чтобы удовлетворить противоречивые требования герметичности рабочей полости, предполагающие наличие минимальных зазоров между юбкой поршня и цилиндром, и предотвращения заклинивания детали в результате теплового расширения, в форме поршня применяют следующие конструктивные элементы:

    уменьшение жесткости юбки за счет специальных прорезей, компенсирующих ее тепловое расширение и улучшающих охлаждение нижней части поршня. Прорези выполняют на той стороне юбки, которая наименее нагружена боковыми силами, прижимающими поршень к цилиндру;

принудительное ограничение теплового расширения юбки вставками из материалов с меньшим, чем у основного металла, коэффициентом температурного расширения;

  • придание юбке поршня такой формы, чтобы в нагруженном состоянии и при рабочей температуре она приняла форму правильного цилиндра.
  • Последнее условие выполнить непросто, поскольку поршень нагревается по всему объему неравномерно и имеет сложную пространственную форму – в верхней части его форма симметрична, а в районе бобышек и на нижней части юбки имеются ассиметричные элементы. Все это приводит к неодинаковой температурной деформации отдельных участков поршня при его нагреве во время работы.
    По этим причинам в конструкции поршня современных автомобильных двигателей обычно выполняют следующие элементы, усложняющие его форму:

      днище поршня имеет меньший диаметр по сравнению с юбкой и наиболее приближено в поперечном сечении к правильной окружности.
      Меньший диаметр сечения днища поршня связан с его высокой рабочей температурой и, как следствие, с большим тепловым расширением, чем в районе юбки. Поэтому поршень современного двигателя в продольном сечении имеет слегка коническую или бочкообразную форму, зауженную к днищу.
      Уменьшение диаметра в верхнем поясе конической юбки для поршней из алюминиевого сплава составляет 0,0003…0,0005D, где D – диаметр цилиндра. При нагреве до рабочих температур форма поршня по длине «выравнивается» до правильного цилиндра.

  • в районе бобышек поршень имеет меньшие поперечные габариты, поскольку здесь сосредоточены массивы металла, и тепловое расширение больше. Поэтому поршень ниже днища имеет в поперечном сечении овальную или эллиптическую форму, которая при нагреве детали до рабочих температур приближается к форме правильной окружности, а поршень по форме приближается к правильному цилиндру.
    Большая ось овала располагается в плоскости, перпендикулярной оси поршневого пальца. Величина овальности колеблется от 0,182 до 0,8 мм.
  • Очевидно, что на все эти ухищрения конструкторам приходится идти, чтобы придать поршню в нагретом до рабочих температур состоянии правильную цилиндрическую форму, обеспечив тем самым минимальный зазор между ним и цилиндром.

    Наиболее эффективным способом предотвращения заклинивания поршня в цилиндре вследствие его теплового расширения при минимальном зазоре является принудительное охлаждение юбки и вставка в юбку поршня элементов из металла, имеющего низкий коэффициент температурного расширения. Чаще всего применяются вставки из малоуглеродистой стали в виде поперечных пластин, которые при отливке поршня помещаются в зону бобышек. В некоторых случаях вместо пластин применяются кольца или полукольца, заливаемые в верхнем поясе юбки поршня.

    Температура днища алюминиевых поршней не должна превышать 320…350 ˚С. Поэтому для увеличения теплоотвода переход от днища поршня к стенкам делают плавным (в виде арки) и достаточно массивным. Для более эффективного теплоотвода от днища поршня применяют его принудительное охлаждение, брызгая на внутреннюю поверхность днища моторное масло из специальной форсунки. Обычно функцию такой форсунки выполняет специальное калиброванное отверстие, выполненное в верхней головке шатуна. Иногда форсунка устанавливается на корпусе двигателя в нижней части цилиндра.

    Для обеспечения нормального теплового режима верхнего компрессионного кольца его располагают значительно ниже кромки днища, образуя так называемый жаровой или огневой пояс. Наиболее изнашиваемые торцы канавки под поршневые кольца часто усиливают специальными вставками из износостойкого материала.

    В качестве материала для изготовления поршней широко применяют алюминиевые сплавы, основным достоинством которых является небольшая масса и хорошая теплопроводность. К недостаткам алюминиевых сплавов можно отнести невысокую усталостную прочность, большой коэффициент температурного расширения, недостаточную износостойкость и сравнительно высокую стоимость.

    В состав сплавов кроме алюминия входят кремний (11…25%) и добавки натрия, азота, фосфора, никеля, хрома, магния и меди. Отлитые или отштампованные заготовки подвергают механической и термической обработке.

    Значительно реже в качестве материала для поршней используют чугун, поскольку этот металл значительно дешевле и прочнее алюминия. Но, несмотря на высокую прочность и износостойкость, чугун обладает сравнительно большой массой, что приводит к появлению значительных инерционных нагрузок, особенно при изменении направления движения поршня. Поэтому для изготовления поршней быстроходных двигателей чугун не применяется.

    Источник

    Adblock
    detector