Увеличение давления воздуха в двигателе

Система впуска, как увеличить подачу воздуха в двигатель

Воздух – крайне необходимый элемент для образования рабочей смеси. Многое зависит от атмосферного давления, количества воздуха, его чистоты. Немаловажна и геометрия движения впускного воздуха, от чего зависит стабильность работы двигателя, а также его КПД.

Конструкция впускной системы двигателя

Простейшая система впуска инжекторного двигателя состоит из следующих деталей:

  • резонатор (воздухозаборник),
  • корпус воздушного фильтра с фильтром,
  • резиновая гофра от корпуса фильтра до дроссельной заслонки,
  • ДМРВ или датчик абсолютного давления и датчик температуры воздуха,
  • дроссельная заслонка с регулятором холостого хода (РХХ) и датчик положения дроссельной заслонки (ДПДЗ),
  • впускной коллектор (ресивер).

Обзор элементов системы впуска двигателя

Резонатор

Представляет собой пластиковый воздухозаборник, который, как правило, установлен под фарами возле радиаторов. Патрубок устанавливается по ходу движения автомобиля, чтобы захватывался поток воздуха.

Конструкция воздухозаборника осуществлена таким образом, чтобы избежать попадания воды в цилиндры.

Корпус воздушного фильтра

Пластиковый короб, в котором устанавливается фильтр. Корпус максимально герметичен, обычно имеет отстойник для мусора.

Фильтр расположен во всей площади корпуса, в составе которого целлюлозная бумага с прорезиненными краями. Рассчитан фильтр таким образом, чтобы обеспечить необходимое сопротивление.

Дроссельный патрубок

Обычно представляет собой гофрированный патрубок. В гофре имеется отдельный патрубок, через который во впускной коллектор попадают картерные газы. К патрубку присоединяется ДМРВ, крепится хомутами с двух сторон во избежание подсоса неучтенного воздуха.

Датчик имеет в своей основе платиновую проволоку и никелевую сетку в качестве чувствительного элемента. Работа датчика заключается в подсчете впускаемого воздуха, а полученная информация уже передается на электронный блок управления.

Получив данные от датчика массового расхода воздуха, блок управления уже знает, в каком количестве подать топливо.

Дроссельная заслонка

Дроссельная заслонка нужна для дозирования впускаемого воздуха, непосредственно влияющее на количество впрыскиваемого топлива.

За положением открытия заслонки отвечает электронный потенциометр ДПДЗ (датчик положения дроссельной заслонки). В зависимости от открытия заслонки корректируется количество подачи топлива.

Устанавливаемый либо на дросселе, либо на коллекторе, регулятор холостого хода (РХХ), отвечает за поток воздуха в обход закрытого дросселя в режиме холостого хода.

Впускной коллектор

Впускной коллектор равномерно распределяет воздух по цилиндрам, создавая необходимую геометрию потока, а также играет роль в смесеобразовании.

Может быть пластиковым или железным. У современных двигателей ресивер с изменяемой геометрией потока воздуха, а за геометрию отвечают двигающиеся шторки.

Доступные методы увеличения подачи воздуха

От количества попадающего воздуха зависит мощность двигателя. Установка турбины – метод радикальный, однако существуют более простые и дешевые способы:

Установка воздушного фильтра нулевого сопротивления

К данному способу относятся скептически, но эффективность ФНС доказана. Оправдана установка подобного фильтра только в случае комплексного тюнинга, но и без того прибавляет скромных 1-3% мощности за счет снижения сопротивления, а значит, увеличения объема воздуха в камере сгорания.

Холодный впуск

Существуют готовые комплекты холодного впуска. Не на всех автомобилях воздухозаборник способен забирать холодный воздух, температура подкапотного пространства не позволяет.

Конструкция холодного впуска дает возможность попадать в коллектор холодному воздуху, а значит в цилиндры попадает больше воздуха – горение смеси будет более эффективно.

Установка впускного коллектора с иной геометрией

Для автомобилей ВАЗ предусмотрены коллектора под разные потребности: с короткими каналами — мотор будет «верховым», с длинными каналами обеспечить достаточный крутящий момент с холостых до средних оборотов.

Резюме

Вышеуказанные операции по изменению количества впускаемого в систему воздуха, а также геометрии его движения, приводят к незначительному увеличению мощности. Для обеспечения стабильной работы впускной системы требуется ежегодная промывка дросселя и датчиков, а также сокращенный срок замены воздушного фильтра.

Источник

Виды наддува

Задача повышения мощности и крутящего момента двигателя была актуальна всегда. Мощность двигателя напрямую связана с рабочим объемом цилиндров и количеством подаваемой в них топливо-воздушной смеси. Т.е., чем больше в цилиндрах сгорает топлива, тем более высокую мощность развивает силовой агрегат. Однако самое простое решение — повысить мощность двигателя путем увеличения его рабочего объема приводит к увеличению габаритов и массы конструкции. Количество подаваемой рабочей смеси можно поднять за счет увеличения оборотов коленчатого вала (другими словами, реализовать в цилиндрах за единицу времени большее число рабочих циклов), но при этом возникнут серьезные проблемы, связанные с ростом сил инерции и резким увеличением механических нагрузок на детали силового агрегата, что приведет к снижению ресурса мотора. Наиболее действенным способом в этой ситуации является наддув.

Читайте также:  Двигатель камминз как работает термостат

Представим себе такт впуска двигателя внутреннего сгорания: мотор в это время работает как насос, к тому же весьма неэффективный — на пути воздуха находится воздушный фильтр, изгибы впускных каналов, в бензиновых моторах — еще и дроссельная заслонка. Все это, безусловно, снижает наполнение цилиндра. Ну а что требуется, чтобы его повысить? Поднять давление перед впускным клапаном — тогда воздуха в цилиндре «поместится» больше. При наддуве улучшается наполнение цилиндров свежим зарядом, что позволяет сжигать в цилиндрах большее количество топлива и получать за счет этого более высокую агрегатную мощность двигателя.

Виды наддува

В ДВС применяют три типа наддува:

• резонансный –при котором используется кинетическая энергия объема воздуха во впускных коллекторах (нагнетатель в этом случае не нужен)
• механический – в этом варианте компрессор приводится во вращение ремнем от двигателя
газотурбинный (или турбонаддув) – турбина приводится в движение
• потоком отработавших газов.

У каждого способа свои преимущества и недостатки, определяющие область применения.

Резонансный наддув

Как уже отмечалось в начале статьи, для лучшего наполнения цилиндра следует поднять давление перед впускным клапаном. Между тем повышенное давление необходимо вовсе не постоянно — достаточно, чтобы оно поднялось в момент закрытия клапана и «догрузило» цилиндр дополнительной порцией воздуха. Для кратковременного повышения давления вполне подойдет волна сжатия, «гуляющая» по впускному трубопроводу при работе мотора. Достаточно лишь рассчитать длину самого трубопровода, чтобы волна, несколько раз отразившись от его концов, пришла к клапану в нужный момент. Теория проста, а вот воплощение ее требует немалой изобретательности: клапан при разных оборотах коленчатого вала открыт неодинаковое время, а потому для использования эффекта резонансного наддува требуются впускные трубопроводы переменной длины. При коротком впускном коллекторе мотор лучше работает на высоких оборотах , при низких оборотах более эффективен длинный впускной тракт. Переменные длины впускных трубопроводов можно создать двумя способами: или путем подключения резонансной камеры, или через переключение на нужный впускной канал или его подключение. Последний вариант называют еще динамическим наддувом. Как резонансный, так и динамический наддув могут ускорить течение впускного столба воздуха. Эффекты наддува, создаваемые за счет колебаний напора воздушного потока, находится в диапазоне от 5 до 20 миллибар. Для сравнения: с помощью турбонаддува или механического наддува можно получить значения в диапазоне между 750 и 1200 миллибар. Для полноты картины отметим, что существует еще инерционный наддув, при котором основным фактором создания избыточного давления перед клапаном является скоростной напор потока во впускном трубопроводе. Дает незначительную прибавку мощности при высоких (больше 140 км/ч) скоростях движения. Используется в основном на мотоциклах.

Механический наддув

Механические нагнетатели (по англ. supercharger) позволяют довольно простым способом существенно поднять мощность мотора. Имея привод непосредственно от коленчатого вала двигателя, компрессор способен закачивать воздух в цилиндры при минимальных оборотах и без задержки увеличивать давление наддува строго пропорционально оборотам мотора. Но у них есть и недостатки. Они снижают КПД ДВС, так как на их привод расходуется часть мощности, вырабатываемой силовым агрегатом. Системы механического наддува занимают больше места, требуют специального привода (зубчатый ремень или шестеренчатый привод) и издают повышенный шум.

Существует два вида механических нагнетателей: объемные и центробежные.
Типичными представителемя объемных нагнетателей являются нагнетатель Roots и компрессор Lysholm.

Конструкция Roots напоминает масляный шестеренчатый насос. Два ротора вращаются в противоположные стороны внутри овального корпуса. Оси роторов связаны между собой шестернями. Особенность такой конструкции в том, что воздух сжимается не в нагнетателе, а снаружи – в трубопроводе, попадая в пространство между корпусом и роторами. Основной недостаток – в ограниченном значении наддува. Как бы безупречно ни были подогнаны детали нагнетателя, при достижении определенного давления воздух начинает просачиваться назад, снижая КПД системы. Способов борьбы немного: увеличить скорость вращения роторов либо сделать нагнетатель двух- и даже трехступенчатым. Таким образом можно повысить итоговые значения до приемлемого уровня, однако многоступенчатые конструкции лишены своего главного достоинства – компактности. Еще одним минусом является неравномерное нагнетание на выходе, ведь воздух подается порциями. В современных конструкциях применяются трехзубчатые роторы спиральной формы, а впускное и выпускное окна имеют треугольную форму. Благодаря этим ухищрениям нагнетатели объемного типа практически избавились от пульсирующего эффекта. Невысокие скорости вращения роторов, а следовательно, долговечность конструкции вкупе с низким шумом привели к тому, что ими щедро оснащают свою продукцию такие именитые бренды, как DaimlerChrysler, Ford и General Motors. Объемные нагнетатели поднимают кривые мощности и крутящего момента, не изменяя их формы. Они эффективны уже на малых и средних оборотах, а это наилучшим образом сказывается на динамике разгона. Проблема лишь в том, что подобные системы очень прихотливы в изготовлении и установке, а значит, довольно дороги.

Читайте также:  Схема регулятора скорости на двигатель 220 вольт

Еще один способ нагнетать во впускной коллектор воздух под избыточным давлением в свое время предложил инженер Лисхольм (Lysholm). Его детище окрестили винтовым нагнетателем, или «double screw» (двойной винт). Конструкция наддува Лисхольма чем-то напоминает обычную мясорубку. Внутри корпуса установлены два взаимодополняющих винтовых насоса (шнека). Вращаясь в разные стороны, они захватывают порцию воздуха, сжимают и загоняют ее в цилиндры. Характерна такая система внутренним сжатием и минимальными потерями, благодаря точно выверенным зазорам. Кроме того, винтовые наддувы эффективны практически во всем диапазоне оборотов двигателя, бесшумны, очень компактны, но чрезвычайно дороги из-за сложности в изготовлении. Однако ими не брезгуют такие именитые тюнинг-ателье, как AMG или Kleemann.

Центробежные нагнетатели по конструкции напоминают турбонаддув. Избыточное давление во впускном коллекторе также создает компрессорное колесо (крыльчатка). Его радиальные лопасти захватывают и отбрасывают воздух в окружной тоннель при помощи центробежной силы. Отличие от турбонаддува лишь в приводе. Центробежные нагнетатели страдают аналогичным, хотя и менее заметным инерционным пороком, но есть и еще одна важная особенность. Фактически величина производимого давления пропорциональна квадрату скорости компрессорного колеса. Проще говоря, вращаться оно должно очень быстро, чтобы надуть в цилиндры необходимый воздушный заряд, порой в десятки раз превышая обороты двигателя. Эффективен центробежный нагнетатель на высоких оборотах. Механические «центробежники» не так капризны в обслуживании и долговечнее газодинамических собратьев, поскольку работают при менее экстремальных температурах. Неприхотливость, а следовательно, и дешевизна конструкции снискали им популярность в сфере любительского тюнинга.

Схема управления механическим нагнетателем довольно проста. При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта — весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается — избыток воздуха возвращается на вход нагнетателя. Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью не только механических, но и газотурбинных систем наддува. При сжатии в компрессоре (либо в нагнетателе) воздух нагревается, в результате чего его плотность уменьшается. Это приводит к тому, что в рабочем объеме цилиндра воздуха, а, следовательно, и кислорода, по массе помещается меньше, чем могло бы поместиться при отсутствии нагревания. Поэтому сжатый воздух перед подачей его в цилиндры двигателя предварительно охлаждается в интеркулере. По своей конструкции это обычный радиатор, который охлаждается либо потоком набегающего воздуха, либо охлаждающей жидкостью. Понижение температуры наддувочного воздуха на 10 градусов позволяет увеличить его плотность примерно на 3%. Это, в свою очередь, позволяет увеличить мощность двигателя примерно на такой же процент.

Газотурбинный наддув

Более широко на современных автомобильных двигателях применяются турбокомпрессоры. По сути, это тот же центробежный компрессор, но с другой схемой привода. Это самое важное, можно сказать, принципиальное отличие механических нагнетателей от «турбо». Именно схема привода в значительной мере определяет характеристики и области применения тех или иных конструкций. У турбокомпрессора крыльчатка-нагнетатель сидит на одном валу с крыльчаткой-турбиной, которая встроена в выпускной коллектор двигателя и приводится во вращение отработавшими газами. Частота вращения может превышать 200.000 об./мин. Прямой связи с коленвалом двигателя нет, и управление подачей воздуха осуществляется за счёт давления отработавших газов.

К достоинствам турбонаддува относят: повышение КПД и экономичности мотора (механический привод отбирает мощность у двигателя, этот же использует энергию отработавших газов, следовательно, КПД увеличивает). Не следует путать удельную и общую экономичность мотора. Естественно, для работы двигателя, мощность которого возросла за счет применения турбонаддува, требуется больше топлива, чем для аналогичного безнаддувного мотора меньшей мощности. Ведь наполнение цилиндров воздухом улучшают, как мы помним, для того, чтобы сжечь в них большее количество топлива. Но массовая доля топлива, приходящаяся на единицу мощности в час у двигателя, оснащенного ТК, всегда ниже, чем у схожего по конструкции силового агрегата, лишенного наддува. Турбонаддув дает возможность достичь заданных характеристик силового агрегата при меньших габаритах и массе, чем в случае применения «атмосферного» двигателя. Кроме того, у турбодвигателя лучше экологические показатели. Наддув камеры сгорания приводит к снижению температуры и, следовательно, уменьшению образования оксидов азота. В бензиновых двигателях наддувом добиваются более полного сгорания топлива, особенно на переходных режимах работы. В дизелях дополнительная подача воздуха позволяет отодвинуть границу возникновения дымности, т. е. бороться с выбросами частиц сажи. Дизели существенно лучше приспособлены к наддуву вообще, и к турбонаддуву в частности. В отличие от бензиновых моторов, в которых давление наддува ограничивается опасностью возникновения детонации, им такое явление неведомо. Дизель можно наддувать вплоть до достижения предельных механических нагрузок в его механизмах. К тому же отсутствие дросселирования воздуха на впуске и высокая степень сжатия обеспечивают большее давление отработавших газов и их меньшую температуру в сравнении с бензиновыми моторами. В общем, как раз то, что нужно для применения турбокомпрессора. Турбокомпрессоры более просты в изготовлении, что окупает ряд присущих им недостатков.

Читайте также:  Датчик давления масла в двигателе принцип действия

При низкой частоте вращения двигателя количество отработавших газов невелико, соответственно, эффективность работы компрессора невысока. Кроме того, турбонаддувный двигатель, как правило, имеет т. н. «турбояму» (по-английски «turbo-lag») — замедленный отклик на увеличение подачи топлива. Вам нужно резко ускориться — вдавливаете педаль газа в пол, а двигатель некоторое время «думает» и лишь потом подхватывает. Объяснение простое — требуется время, пока мотор наберет обороты, увеличится давление выхлопных газов, раскрутится турбина, с ней крыльчатка нагнетателя — и наконец, «пойдет» воздух. Избавиться от указанных недостатков конструкторы пытаются разными способами. В первую очередь, снижением массы вращающихся деталей турбины и компрессора. Ротор современного турбокомпрессора настолько мал, что легко умещается на ладони. Снижение массы достигается не только конструкцией ротора, но и выбором для него соответствующих материалов. Основная сложность при этом- высокая температура отработавших газов. Металлокерамический ротор турбины примерно на 20% легче изготовленного из жаростойких сплавов, да к тому же обладает меньшим моментом инерции. До последнего времени срок службы всего агрегата ограничивала долговечность подшипников. По сути, это были вкладыши, подобные вкладышам коленчатого вала, которые смазывались маслом под давлением. Износ таких подшипников скольжения был, конечно, велик, однако шариковые не выдерживали огромной частоты вращения и высоких температур. Выход нашли когда удалось разработать подшипники с керамическими шариками. Однако достойно удивления не применение керамики — подшипники заполнены постоянным запасом пластичной смазки, то есть канал от штатной масляной системы двигателя уже не нужен! Избавиться от недостатков турбокомпрессора позволяет не только уменьшение инерционности ротора, но и применение дополнительных, иногда довольно сложных схем управления давлением наддува. Основные задачи при этом — уменьшение давления при высоких оборотах двигателя и повышение его при низких. Полностью решить все проблемы можно использованием турбины с изменяемой геометрией (Variable Nozzle Turbine), например, с подвижными (поворотными) лопатками , параметры которой можно менять в широких пределах. Принцип действия VNT турбокомпрессора заключается в оптимизации потока выхлопных газов, направляемых на крыльчатку турбины. На низких оборотах двигателя и малом количестве выхлопных газов VNT турбокомпрессор направляет весь поток выхлопных газов на колесо турбины, тем самым увеличивая ее мощность и давление наддува. При высоких оборотах и высоком уровне газового потока турбокомпрессор VNT располагает подвижные лопатки в открытом положении, увеличивая площадь сечения и отводя часть выхлопных газов от крыльчатки, защищая себя от превышения оборотов и поддерживая давление наддува на необходимом двигателю уровне, исключая перенаддув.

Комбинированные системы

Помимо одиночных систем наддува сейчас часто встречается и двухступенчатый наддув. Первая ступень — приводной компрессор — обеспечивает эффективный наддув на малых оборотах ДВС, а вторая — турбонагнетатель — утилизирует энергию выхлопных газов. После достижения силовым агрегатом достаточных для нормальной работы турбины оборотов, компрессор автоматически выключается, а при их падении вновь вступает в действие.
Ряд производителей устанавливают на свои моторы сразу два турбокомпрессора. Такие системы называют «битурбо» или «твинтурбо». Принципиальной разницы в них нет, за одним лишь исключением. «Битурбо» подразумевает использование разных по диаметру, а следовательно и производительности, турбин. Причем алгоритм их включения может быть как параллельным, так и последовательным (секвентальным). На низких оборотах быстро раскручивается и вступает в работу турбонаддув маленького диаметра, на средних к нему подключается «старший брат». Таким образом, выравнивается разгонная характеристика автомобиля. Система дорогостоящая, поэтому ее можно встретить на престижных автомобилях, например Maserati или Aston Martin. Основная задача «твинтурбо» заключается не в сглаживании «турбоямы», а в достижении максимальной производительности. При этом используются две одинаковые турбины.

Понравилась статья?

Ставь лайк и подписывайся на канал !

Так ты будешь получать больше интересной и полезной информации.

Источник

Adblock
detector