Управление двигателями мостовая схема mosfet

Н-мост и схема работы для управления двигателями

В различных электронных схемах часто возникает необходимость менять полярность напряжения, прикладываемого к нагрузке, в процессе работы. Схемотехника таких устройств реализуется с помощью ключевых элементов. Ключи могут быть выполнены на переключателях, электромагнитных реле или полупроводниковых приборах. Н-мост на транзисторах позволяет с помощью управляющих сигналов переключать полярность напряжения поступающего на исполнительное устройство.

Что такое Н-мост

В различных электронных игрушках, некоторых бытовых приборах и робототехнике используются коллекторные электродвигатели постоянного тока, а также двухполярные шаговые двигатели. Часто для выполнения какого-либо алгоритма нужно с помощью электрического сигнала быстро поменять полярность питающего напряжения с тем, чтобы двигатель технического устройства стал вращаться в противоположную сторону. Так робот-пылесос, наткнувшись на стену, мгновенно включает реверс и задним ходом отъезжает от препятствия. Такой режим реализуется с помощью Н-моста. Схема Н-моста позволяет так же изменять скорость вращения электродвигателя. Для этого на один из двух ключей подаются импульсы от широтно-импульсного модулятора (ШИМ).

Схемой управления режимами двигателя является h-мост. Это несложная электронная схема, которая может быть выполнена на следующих элементах:

  • Биполярные транзисторы
  • Полевые транзисторы
  • Интегральные микросхемы

Основным элементом схемы является электронный ключ. Принципиальная схема моста напоминает латинскую букву «Н», отсюда название устройства. В схему входят 4 ключа расположенных попарно, слева и справа, а между ними включена нагрузка.

H-мост

На схеме видно, что переключатели должны включаться попарно и по диагонали. Когда включен 1 и 4 ключ, электродвигатель вращается по часовой стрелке. 2 и 3 ключи обеспечивают работу двигателя в противоположном направлении. При включении двух ключей по вертикали слева или справа произойдёт короткое замыкание. Каждая пара по горизонтали закорачивает обмотки двигателя и вращения не произойдёт. На следующем рисунке проиллюстрировано, что происходит, когда мы меняем положение переключателей:

Схема работы H-моста

Если мы заменем в схеме переключатели на транзисторы, то получим такой вот (крайне упрощенный) вариант:

Для того чтобы исключить возможное короткое замыкание h-мост на транзисторах дополняется входной логикой, которая исключает появление короткого замыкания. В современных электронных устройствах мостовые схемы изменения полярности дополняются устройствами, обеспечивающими плавное и медленное торможение перед включением реверсного режима.

Н-мост на биполярных транзисторах

Транзисторы в ключевых схемах работают по принципу вентилей в режиме «открыт-закрыт», поэтому большая мощность на коллекторах не рассеивается, и тип применяемых транзисторов определяется, в основном, питающим напряжением. Несложный h-мост на биполярных транзисторах можно собрать самостоятельно на кремниевых полупроводниковых приборах разной проводимости.

H-мост на биполярных транзисторах

Такое устройство позволяет управлять электродвигателем постоянного тока небольшой мощности. Если использовать транзисторы КТ816 и КТ817 с индексом А, то напряжение питания не должно превышать 25 В. Аналогичные транзисторы с индексами Б или Г допускают работу с напряжением до 45 В и током не превышающим 3 А. Для корректной работы схемы транзисторы должны быть установлены на радиаторы. Диоды обеспечивают защиту мощных транзисторов от обратного тока. В качестве защитных диодов можно использовать КД105 или любые другие, рассчитанные на соответствующий ток.

Недостатком такой схемы является то, что нельзя подавать на оба входа высокий потенциал, так как открытие обоих ключей одновременно вызовет короткое замыкание источника питания. Для исключения этого в интегральных мостовых схемах предусматривается входная логика, полностью исключающая некорректную комбинацию входных сигналов.

Схему моста можно изменить, поставив в неё более мощные транзисторы.

Н-мост на полевых транзисторах

Кроме использования биполярных транзисторов в мостовых схемах управления питанием, можно использовать полевые (MOSFET) транзисторы. При выборе полупроводниковых элементов обычно учитывается напряжение, ток нагрузки и частота переключения ключей, при использовании широтно-импульсной модуляции. Когда полевой транзистор работает в ключевом режиме, у него присутствуют только два состояния – открыт и закрыт. Когда ключ открыт, то сопротивление канала ничтожно мало и соответствует резистору очень маленького номинала. При подборе полевых транзисторов для ключевых схем следует обращать внимание на этот параметр. Чем больше это значение, тем больше энергии теряется на транзисторе. При минимальном сопротивлении канала выше КПД моста и лучше его температурные характеристики.

Дополнительным негативным фактором является зависимость сопротивления канала от температуры. С увеличением температуры этот параметр заметно растёт, поэтому при использовании мощных полевых транзисторов следует предусмотреть соответствующие радиаторы или активные схемы охлаждения. Поскольку подбор полевых транзисторов для моста связан с определёнными сложностями, гораздо лучше использовать интегральные сборки. В каждой находится комплементарная пара из двух мощных MOSFET транзисторов, один из которых с P каналом, а другой с N каналом. Внутри корпуса также установлены демпферные диоды, предназначенные для защиты транзисторов.

В конструкции использованы следующие элементы:

  • VT 1,2 – IRF7307
  • DD 1 – CD4093
  • R 1=R 2= 100 ком

Интегральные микросхемы с Н-мостом

В ключах Н-моста желательно использовать комплементарные пары транзисторов разной проводимости, но с одинаковыми характеристиками. Этому условию в полной мере отвечают интегральные микросхемы, включающие в себя один, два или более h-мостов. Такие устройства широко применяются в электронных игрушках и робототехнике. Одной из самых простых и доступных микросхем является L293D. Она содержит два h-моста, которые позволяют управлять двумя электродвигателями и допускают управление от ШИМ контроллера. Микросхема имеет следующие характеристики:

  • Питание – + 5 В
  • Напряжение питания электромотора – + 4,5-36 В
  • Выходной номинальный ток – 500 мА
  • Ток в импульсе – 1,2 А

Микросхема L298 так же имеет в своём составе два h-моста, но гораздо большей мощности. Максимальное напряжение питания, подаваемое на двигатель, может достигать + 46 В, а максимальный ток соответствует 4,0 А. Н-мост TB6612FNG допускает подключение двух коллекторных двигателей или одного шагового. Ключи выполнены на MOSFET транзисторах и имеют защиту по превышению температуры, перенапряжению и короткому замыканию. Номинальный рабочий ток равен 1,2 А, а максимальный пиковый – 3,2 А. Максимальная частота широтно-импульсной модуляции не должна превышать 100 кГц.

Читайте также:  Какое масло заливается в двигатель фольксваген поло седан

Мостовые устройства управления электродвигателями часто называют драйверами. Драйверами так же называют микросхемы, только обеспечивающие управление мощными ключевыми каскадами. Так в схеме управления мощным электродвигателем используется драйвер HIP4082. Он обеспечивает управление ключами, собранными на дискретных элементах. В них используются MOSFET транзисторы IRF1405 с N-каналами. Компания Texas Instruments выпускает большое количество интегральных драйверов предназначенных для управления электродвигателями разных конструкций. К ним относятся:

  • Драйверы для шаговых двигателей – DRV8832, DRV8812, DRV8711
  • Драйверы для коллекторных двигателей – DRV8816, DRV8848, DRV8412/32
  • Драйверы для бесколлекторных двигателей – DRV10963, DRV11873, DRV8332

На рынке имеется большой выбор интегральных мостовых схем для управления любыми электродвигателями. Сделать конструкцию можно и самостоятельно, применив качественные дискретные элементы.

Источник

Схемы управления MOSFET и IGBT – Полупроводниковая силовая электроника

Разработчику энергосберегающей аппаратуры, который использует современную элементную базу силовой электроники, необходимо уметь правильно организовывать структуру управления мощными силовыми полупроводниковыми приборами. Ниже рассмотрим наиболее часто встречающиеся на практике случаи организации такого управления. В зависимости от конкретной ситуации можно использовать управление КМОП-логикой, эмитгерными повторителями, схемами управления с разделением цепей заряда и разряда входной емкости. Рассмотрим особенности организации управления с помощью КМОП-логики. На рис. 3.97 показан КМОП инвертор, образованный рМОП и пМОП транзисторами с индуцированным каналом.

Напряжение питания КМОП инвертора может изменяться в широких пределах. В статическом состоянии и без нагрузки такой элемент потребляет очень малый ток, поскольку один из транзисторов в статическом состоянии всегда закрыт. Если на входе инвертора напряжение логического нуля UQ, то Т1 открыт, а Т2 — закрыт, если напряжение логической единицы ί/, то Т2 открыт, а Т1 — закрыт.

На рис. 3.98 показан пример организации управления MOSFET-транзистором Т с помощью стандартного КМОП-инвертора. Схема управления мощным MOSFET с помощью КМОП логики является одной из самых простых, но такая схема эффективно работает при медленном переключении MOSFET. Оценим время переключения, например, для типовых выходных токов КМОП-инвертора, которые составляют

24 мА (или 0,024 А). Время заряда емкости затвора MOSFET определим из выражения:

Для стандартных значений Um = 5 В, С и = 4 нФ получаем, что время переключения At = 4 · 10 -9 · 5/0,024 = 833 · 10 -9 с = 833 нс.

Эффективным способом сокращения времени включения и выключения мощного полевого транзистора ТЗ является применение эмиттерных повторителей между логической схемой, ШИМ-контроллером и затвором транзистора, как показано на рис. 3.99 [15].

Рис. 3.99. Управление MOSFET и IGBT при помощи эмиттерных повторителей

При отпирании MOSFET включается транзистор Т1 верхнего плеча эмитгерного повторителя, который обеспечивает протекание входного тока транзистора ТЗ, величина которого определяется выражением:

Следовательно, поступающий через резистор R1 с выхода контроллера ток усиливается в β + 1 раз, что позволяет существенно уменьшить время включения MOSFET

При запирании MOSFET значение его входного тока будет определяться следующим выражением:

Резистор R3, включаемый между общей шиной и затвором мощного транзистора, необходим для устранения выхода из строя MOSFET (ТЗ) в случае, когда напряжение питания +Un не подано, а транзистор ТЗ уже запитан. Емкость С необходима для снижения уровня помех на затворе транзистора ТЗ.

Необходимо соблюдать следующее обязательное условие — элементы ΤΙ, Т2, R2, R3 должны быть расположены на плате в непосредственной близости с транзистором ТЗ.

При большой мощности, переключаемой MOSFET (в нагрузке 1,5 кВт и более), цепи заряда и разряда входной емкости С и транзистора ТЗ следует полностью разделить, как это показано на рис. 3.100, причем при выборе резисторов R2, R3 эмитгерного повторителя необходимо обеспечивать условие: R3 много меньше R2,

Рис. 3.100. Управление MOSFET с разделением цепей заряда и разряда входной емкости

Рис. 3.101. Управление стойкой (полумостом) MOSFET и IGBT

Отдельного внимания требует рассмотрение особенностей организации управления стойкой (полумостом) MOSFET и IGBT, которая достаточно часто встречается на практике. Специальные устройства для управления MOSFET и IGBT могут непосредственно подавать напряжение на затвор, обеспечивая при этом необходимую величину тока заряда входной емкости. Дополнительный транзистор требуется в затворной цепи для обеспечения режима быстрого для быстрого запирания MOSFET (рис. 3.101) [15].

Схема работает следующим образом. Два выходных сигнала от управляющего драйвера находятся в противофазе. При высоком напряжении на выводе DRV1A (по отношению к DRV1B) на выводе DRV2A имеет место низкое напряжение (по отношению к DRV2B), и наоборот. Резисторы R2 и R4 обеспечивают поддержание закрытого состояния транзисторов Т1 и Т2 при отсутствии сигналов на выходе драйвера.

Низкоомные резисторы R1 и R3 ограничивают значения токов выходных каскадов драйвера. При отпирании одного из транзисторов (например, Т1) высокое напряжение с выхода 1 (DRV1A) драйвера через диод D1 поступает на затвор Т1. Транзистор ТЗ в интервале открытого состояния Т1 оказывается запертым. Если напряжение на данном выходе драйвера близко к нулю, биполярный транзистор открывается, а входная емкость быстро разряжается через открытый р-п-р транзистор.

В отдельных случаях применяется схема управления с помощью трансформатора, когда использование драйвера по каким-то причинам невозможно или когда нужна гальваническая развязка между ШИМ-контроллером и силовым ключом.

Рис. 3.102. Управление стойкой (полумостом) MOSFET и IGBT с помощью трансформатора

На представленной схеме нижний MOSFET управляется непосредственно от ШИМ-контроллера, а верхний — от трансформатора. Такой способ применим, когда используются полевые транзисторы не очень большой мощности, а частота их переключения в устройстве достаточно высокая, что не позволяет использовать ИМС драйвера.

Источник: Белоус А.И., Ефименко С.А., Турцевич А.С., Полупроводниковая силовая электроника, Москва: Техносфера, 2013. – 216 с. + 12 с. цв. вкл.

Источник

Управление автомобильным электромотором с помощью MOSFET NXP

Вступление

Электродвигатель (электромотор) — электрическое устройство, в котором электрическая энергия преобразуется в механическую.

MOSFET (metal-oxide-semiconductor field effect transistor) — полевой МОП (метал-оксид-полупроводник) транзистор, более экономичный, по сравнению с биполярными транзисторами. Иногда МОП-транзисторы называют МДП (металл-диэлектрик-полупроводник).

Существует много разновидностей электромоторов:

Постоянного тока — электромоторы, питание которых осуществляется постоянным током.

  • коллекторные электромоторы постоянного тока — электрический мотор, в котором датчиком положения ротора и переключателем тока в обмотках является одно и тоже устройство — щеточно-коллекторный узел. Разновидностями коллекторного электромотора являются: с возбуждением постоянными магнитами, с параллельным включением обмоток возбуждения якоря, с последовательным соединением обмоток возбуждения и якоря, со смешанным соединением обмоток возбуждения и якоря;
  • бесколлекторные двигатели постоянного тока (вентильные моторы) — электромоторы, выполненные в виде замкнутой системы с использованием датчика положения ротора (ДПР), системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора);
Читайте также:  Из за чего долго прогревается двигатель ваз 2110

Переменного тока — электрический мотор, питание которого осуществляется переменным током. Разновидностями электромотора переменного тока являются: синхронный электромотор — ротор вращается синхронно с магнитным полем питающего напряжения, асинхронный электромотор — частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением, однофазные, двухфазные, трехфазные, многофазные;

  • шаговые электромоторы — электромоторы, которые имеют конечное число положений ротора. В таких электромоторах положение ротора фиксируется подачей питания на соответствующие обмотки, и переход в другое положение осуществляется путем снятия питания с одних обмоток и передачи его на другие;
  • универсальные коллекторные моторы — коллекторные электромоторы, которые могут работать и на постоянном токе и на переменном.

Тенденция развития автомобильной промышленности предъявляет особые требования к комфортабельности, управляемости и безопасности современных автомобилей. Для обеспечения наилучшей управляемости автомобиля требуется большое количество электромоторов, в современных автомобилях бизнес класса и супер карах может использоваться до 30 электромоторов. В перспективе ожидается, что в следующем поколении автомобилей такие особенности будут стандартом для автомобилей среднего класса.

Все эти электромоторы нуждаются в управлении, обычно блоком управления является панель управления автомобиля, такая система требует большого количества медных проводов в электросети автомобиля, которые могут достигать в длину до 4 км, и весить до 20 кг. Такие электросети могут содержать более 1000 проводов, несколько тысяч разъемов и занимать большое количество времени на прокладку. Мало того что, такая система является достаточно дорогой, увеличивает вес автомобиля, что ведет к увеличению расхода топлива, но и создает трудности при прокладке проводов, и даже является не допустимым физически при прокладке до 70-80 проводов, например в дверные петли автомобиля. В настоящее время для включения электромотора, управления направлением вращения или его скоростью используются полупроводниковые ключи, что позволяет использовать более тонкие провода и обеспечить их прокладку в малодоступные места. Наибольшее снижение веса и уменьшения проводов может быть достигнуто мультиплексным включением проводов контролируемых последовательной шиной и использованием протоколов CAN и LIN.

Таблица применения электромоторов в автомобиле

Применение Мощность типовая, Вт Номинальный ток, А Количество применяемых моторов Тип управления Количество для управления мотором Комментарии
Кондиционер 300 25 1 однонаправленный, с регулировкой скорости 1 Принудительная остановка может потребовать более мощный мотор
Вентилятор радиатора 120-240 10-20 1 однонаправленный, с регулировкой скорости 1 Здесь можно применять щеточный электромотор, требующий от 3 до 6 транзисторов с низким зарядом
Электронасос 100 8 1 однонаправленный 1
Дворники:
передние
боковые
задние
60-100 5-8 1-2
1
2
однонаправленный, с регулировкой скорости 1 Возврат дворников можно осуществлять механически. Это сокращает применение ключей до 2-4
Омыватели:
передние
задние
30-60 2,5-5 1-2
1-2
однонаправленный 1
Стеклоподъемник 25-120 2-10 2-4 реверсивный 4
Люк 40-100 3,5-8 1 реверсивный 4
Сидение (движение вперед/назад, подъем, наклон, поясничная поддержка) 50 4 4-16 реверсивный 4
Ремень безопасности 50 4 2-4 реверсивный 4
Крышка подъемных головных фар 50 4 2 реверсивный 4
Антенна радио 25 2 1 реверсивный 4
Активатор двери 12-36 1-3 6-9 реверсивный 4
Регулятор зеркал 12 1 2 реверсивный 4

Типы электромоторов используемые в автомобилях

Электромоторы, разработанные для автомобильной промышленности представляют собой попытку достижения оптимального компромисса между противоречивыми требованиями. Они должны удовлетворяться требованиям характеристик момента/скорости вращения, при условии ограниченного количества используемого материала, места и цены.

Существуют четыре основных семейства электромоторов постоянного тока (DC motors), которые потенциально могут использоваться в автомобильной промышленности.

Двухобмоточный коллекторный электродвигатель постоянного тока

Широко используются электромоторы выполненные традиционным способом с намоткой на статоре, питание ротора осуществляется через щетки и мультисегментный коммутатор (рис. 1).


Рисунок 1. Двухобмоточный коллекторный индуктивный электромотор постоянного тока

Однако недавно они были в значительной степени заменены электродвигателями с постоянным магнитом. Примечательно то, что они имеют квадратурные характеристики. Они могут быть с сериесной обмоткой (с высокими характеристиками момента/скорости вращения при запуске, но при этом иметь тенденцию «убегать» в режиме без нагрузки), с шунтовой обмоткой (с относительно пологими характеристиками момента/скорости вращения) или реже со смешанным возбуждением.

Коллекторный электромотор постоянного тока с постоянным магнитом

В настоящее время это самый востребованный электромотор в современных автомобилях. В таком электродвигателе постоянный магнит формирует статор, ротор состоит из прорезанных листов стали с намоткой медных проводов (рис.2). Такие моторы имеют более легкий ротор и меньшие габариты, чем двухобмоточные коллекторные электромоторы. Типичные отношения веса между коммутаторным электромотором и коллекторным составляет: медного кабеля 1:10, магнита 1:7, ротора 1:2,5, корпус 1:1. Но преимуществом коммутаторных электромоторов является наличие линейных характеристик момента/скорости вращения (рис.3) для типичных кривых, связывающих момент вращения, скорость, поток и эффективность. Коллекторные электромоторы, как правило, используются на скорость вращения ниже 5000 оборотов в минуту, типовая индуктивность составляет 100-500 микроГенри, что намного ниже, чем у коллекторных электродвигателей. При этом коммутаторные электродвигатели изготавливаются из новых материалов (например, неодимовый ферробор), усиливающих эффективность электродвигателя при меньших размерах.


Рисунок 2. Коллекторный электромотор постоянного тока с постоянным магнитом


Рисунок 3. Характеристик момента/скорости вращения двухобмоточного коллекторного и коллекторного электромотора с постоянным магнитом

Бесколлекторный электромотор постоянного тока

Несмотря на то, что в системах гидроуправления с приводом от электромотора бесколлекторные электродвигатели постоянного тока еще широко не используются в автомобилях, они рассматриваются для использования в специализированных приложениях, например, топливный насос, где их свойство отсутствия искры, делает их очень привлекательными. Они состоят из обмотки статора и ротора на постоянном магните (рис. 4).


Рисунок 4. Бесколлекторный электромотор постоянного тока

Таким образом, их наименование подразумевает отсутствие механического коммутатора и щеток, что подразумевает отсутствие шума, изнашивание щеток и связанное с этим обслуживание. Но вместо этого они зависят от электроники, поскольку требуют постоянный контроль положения ротора, который может включать в себя магниторезистивные датчики, датчики Холла или не возбуждающие сигналы в обмотке. Благодаря их малому весу, малоинерционному ротору они обеспечивают высокую производительность, высокую плотность мощности, высокую скорость и ускорение, они могу использоваться в качестве сервосистем.

Коммутируемый синхронный электромотор

Читайте также:  Причины понижения давления масла в системе смазки двигателя

Эти электромоторы являются бифилярным эквивалентом бесколлектрного электромотора с постоянным магнитом (рис. 5), с подобными преимуществами и ограничениями. Напомним, что такие электродвигатели еще не нашли широкое применение, они являются концептуальным решением для замены некоторых электродвигателей имеющих большие габариты и массу, в таких автомобильных приложениях, как радиатор и кондиционер, где их соотношение большой мощности и веса является весьма привлекательным. Коммутируемые синхронные двигатели могут так же использоваться, как шаговые двигатели в таких приложениях, как антиблокировочная система (ABS) и управление дроссельной заслонкой.


Рисунок 5. Коммутируемый синхронный электромотор

Конфигурация привода электромотора

Тип двигателя имеет значительное влияние на конфигурацию схемы управления электромотором. Два семейства электромоторов постоянного тока, коммутируемые и коллекторные, нуждаются в различных схемах управления. Не смотря на это можно подобрать MOSFET транзисторы, которые способны работать одинаково эффективно с обоими семействами моторов.

Оба типа с постоянным магнитом или двухобмоточный электромотор могут управляться посредством коммутации с последовательной подачей напряжения питания (рис. 6)


Рисунок 6. Ключевая схема коллекторного электромотора

Раньше традиционно в схемах управления электромоторами использовались реле, но в связи с их не достаточной долговечностью, габаритами и надежностью (особенно в условиях вибрации) и цены, основную массу в схемах управления получили полупроводниковые элементы способные обеспечивать основные показатели, такие как: низкое падение напряжения, малое управляющее напряжение, устойчивость к вибрациям. Силовые MOSFET транзисторы так же обладают: низким сопротивлением открытого канала несколько мОм, малой мощностью рассеяния несколько мВт, и необходимого напряжения, в несколько вольт (практически при нулевом токе), затвора.

После того как электромотор выключается, он может продолжать вращаться, и в этот момент электромотор является источником напряжения и механическая энергия вращения, должна быть рассеяна или трением или должна быть преобразована в электроэнергию и возвращена в источник через встроенный в MOSFET встречный диод. Если электромотор не вращается после отключения, то в таком случае он будет являться индуктивной нагрузкой и кратковременное переходное напряжение ключа нижнего плеча может вызвать лавинный пробой MOSFET транзистора. В зависимости от магнитуды энергии накопленной в магнитном поле и способности MOSFET транзистора антилавинный диод, включенный параллельно с электромотором может требоваться, может не требоваться.

Так в первом приближении получаем, если:

1/2LmI 2 m 50 (60)* Скачки обратной связи 30-50 Нагрузка при выключении 22-30 Импульс перенапряжения при включении индуктивной нагрузки 16-22 (32-40)* Скачок при запуске двигателя или неисправный регулятор 10,5-16 (20-32)* Нормальный режим работы 8-10,5 При неисправности генератора 6-8 (9-12)* Запуск двигателя внутреннего сгорания 0-6 (0-6)* Запуск дизельного двигателя отрицательное Импульсы отрицательных напряжений, переполюсовка

* 24 В напряжение питания

При выборе MOSFET транзистора важно учитывать допустимую устойчивость к таким воздействиям, или выбирать элемент исходя из того что бы напряжения истока VDS было рассчитано на скачки до 50/60 В. Для защиты от перенапряженный выше заданных параметров необходимо обеспечивать защиту внешними элементами.

Температура окружающей среды салона автомобиля лежит в пределах -40 — +85° С, и -40 — +125° С под капотом автомобиля. Все MOSFET транзисторы NXP рассчитаны на рабочую температуру до Tjmax = 175° С.

Напряжение питания в автомобиле которое вырабатывает аккумуляторная батарея около 12 В (номинальное), которое может варьироваться в пределах от 10,5 В до 16 В в обычном режиме работы. Это важно учитывать при выборе MOSFET транзистора, для удовлетворения необходимых параметров его полного переключения, при этом не забывать, что для ключа верхнего плеча необходимое напряжение можно получить от цепи подкачки или цепи обратной связи.

Для включения MOSFET транзистора обычно достаточно подать напряжение на затвор 6 В, но для достижения минимального сопротивления транзистора необходимо напряжение 10 В. Таким образом, разброс напряжения затвора VGS между доступным и необходимым может быть весьма ограниченным в автомобильной электронике.

Одним из способов решения проблемы состоит в использовании MOSFET транзисторов с логическим уровнем (L2FET), например, такой как PHT11N06LT, который достигает минимальное сопротивление 40 мОм при напряжении VGS 5 В.

NXP Semiconductors на рынке MOSFET транзисторов

В настоящее время MOSFET транзисторы, являются одними из самых востребованных элементов в современной автомобильной электронике. В условиях жесткой конкуренции и существующих требований к высокой энергоэффективности оборудования разработчики стремятся уменьшить габариты, энергопотребление и себестоимость конечной продукции.

Компания NXP, являясь одним из лидеров по производству MOSFET транзисторв для автомобильной промышленности, предлагает широкий выбор транзисторов, в котором насчитывается около 250 наименований элементов. Благодаря высокому качеству и широкому портфолио MOSFET транзисторов, компания NXP предоставляет возможность разработчикам электроники подобрать максимально удовлетворяющий их задачам элемент. Краткий перечень и характеристики MOSFET транзисторов NXP для применения в автомобильной электронике приведен в таблице.

P/N Корпус IDмакс, А QGDтип. RDSonмакс [VGS = 10 В] мОм RDSonмакс [VGS = 4,5 В] мОм RDSonмакс [VGS = 5 В] мОм VDSмакс В
BUK7511-55A TO-220AB 75 11 55
BUK7611-55A D2PAK 75 11 55
BUK754R3-75C TO-220AB 100 4.3 75
BUK7E4R3-75C I2PAK 100 4.3 75
BUK7222-55A DPAK 48 22 55
BUK9840-55 SOT223 10.7 40 55
BUK9510-55A TO-220AB 100 28 9 11 10 55
BUK9610-55A D2PAK 100 28 9 11 10 55
BUK9E06-55B I2PAK 75 22 6 55
BUK9Y11-30B SOT669 59 5.4 12 11 30
BUK7Y13-40B SOT669 58 5 13 40
BUK9628-100A D2PAK 49 27 228 100
BUK9E3R2-40B I2PAK 100 37 3.2 40
BUK9907-40ATC TO-220 75 6.2 7 40
BUK9Y19-55B SOT669 46 8 19 55
BUK764R0-75C D2PAK 100 4 75
BUK9E04-30B I2PAK 75 22 4 30
BUK6213-30A DPAK 55 14 13 30

Вывод

Несмотря на жесткие требования предъявляемые к MOSFET транзисторам для применения в схемах управления электромоторами автомобиля: низкая стоимость и высокая надежность, и большое разнообразие типов и конфигураций моторов, компания NXP предлагает оптимальные решения для применения в схемах управления электромоторами. Комбинация высоких технических характеристик и низкая стоимость, MOSFET транзисторов NXP делают их универсальным продуктом для применения в автомобильной электронике.

Источник

Adblock
detector