Удельный расход топлива двигателя внутреннего сгорания

Удельный расход топлива двигателя внутреннего сгорания

Главное меню

Судовые двигатели

Если двигатель потребляет В кг/сек топлива и развивает мощ­ность N i вт, то отношение

b i = В / N i (153)

называется удельным индикаторным расходом топлива.

b e = В / N e (154)

называется удельным эффективным расходом топлива.

Величины b i и b е являются одними из показателей экономич­ности работы двигателей. Значение b i может быть определено по количеству воздуха, поступающего в цилиндр. За один цикл (при р , Т ) в цилиндр поступает воздух в объеме V s ? н . Если двигатель делает п об/сек, то при коэффициенте тактности k в цилиндре со­вершается nk цикл/сек. Количество воздуха, поступающее в ци­линдр за 1 сек; будет V s ? н nk .

Если число цилиндров дизеля z , то расход воздуха на двига­тель за 1 сек его работы

Для полного сгорания 1 кг топлива действительно необходимое количество воздуха

Величины b i и b е соответственно равны: для четырехтактных тихоходных двигателей 175—190 и 200—240 кг/(квт?ч) и четырех­тактных быстроходных 190—230 и 230—280 кг/(квт?ч); для двух­тактных тихоходных двигателей 190—215 и 220—260 кг/ (кет?ч) и двухтактных быстроходных 215—245 и 230—300 кг/(квт?ч).

Термический к. п. д. ? t цикла со смешанным подводом тепла выражается формулой (124) . У реальных двигателей ? t = 0,64 ? 0,7. Термический к. п. д. показывает ту долю тепла от всего подведен­ного в цикле, которая может быть превращена в работу при идеальных условиях протекания цикла, ? t = L / Q н Разность 1— ? t показывает ту долю тепла, которая согласно второму закону термодинамики неизбежно отводится и теряется для цикла.

Индикаторный к. п. д. учитывает все тепловые потери и пока­зывает долю тепла, превращенного во внутреннюю работу, от всего подведенного, ? i = L i / Q н . Если выражение отнести к 1 сек, то L i = N i , a расход топлива составит В кг/сек и тогда

Для четырехтактных двигателей ? i = 0,43 ? 0,5 и для двухтакт­ных ? i = 0,4 ? 0,48.

Для оценки степени использования тепла в двигателе по срав­нению с использованием тепла в термодинамическом цикле, т. е. для оценки тепловых потерь цикла в реальном ДВС по сравнению с соответствующим идеальным ДВС вводится понятие относитель­ного к. п. д. ? , представляющего отношение количества тепла, превращенного в индикаторную работу L i , к тому количеству тепла, которое могло бы быть превращено в работу L при идеаль­ных условиях протекания цикла, ? = L i / L .

Оценка экономичности ДВС в целом производится по его эф­фективному к. п. д. ? е , представляющему собой отношение тепла, превращенного в эффективную работу L e , ко всему подведенному в цикле Q н : ? е =L e /Q н . Если это выражение отнести к 1 сек, то L e = N e и расход топлива составит В. Тогда

Эффективный к. п. д. ? е учитывает как тепловые, так и меха­нические потери в двигателе и показывает ту долю тепла, которая превращается в эффективную работу, от всего подведенного в цикле. Для судовых дизелей ? е лежит в пределах 0,35—0,45. Так как ? м = N e / N i , то на основании формул (155) и (156) можно полу­чить ? е = ? i ? м . Подставив ? i = ? ? t , определяем

Источник

Удельный расход топлива двигателя внутреннего сгорания

©Дмитрий Рок (aka rokkk)

Если спросить об удельном расходе технически грамотного человека, то он легко сможет привести определение, рассказать, как его подсчитать и каковы единицы измерения. Однако, даже профессионалы двигателепонимания, двигателедиагностики и двигателепересторойки далеко не все имеют в голове чёткое представление о применяемости этого параметра, не говоря уже о новичках.

Для начала, для тех, кто совсем не в курсе, приведу официальное определение (из Википедии):

« Удельный расход топлива — единица измерения, используемая в грузопассажирских перевозках и обозначающая расход единицы топлива на единицу мощности на расстояние в один километр или в час (или секунду) — например − 166 г/л.с.ч.»

Классическая методика нагрузочных испытаний на моторном стенде (в ходе которых и определяются удельные расходы) состоит в следующем:

  • Двигатель выводится в определённую рабочую точку на обороты n=const и нагрузку L 1 =const. (Для простоты понимания будем нагрузку определять по положению дросселя.)
  • В этой рабочей точке меняют подачу топлива с фиксацией часового расхода и крутящего момента на валу двигателя. Естественно, что при уменьшении топливоподачи уменьшается момент.
  • Для каждой полученной точки считают удельный расход:
    ge = Gt / Ne, где:
    ge – удельный расход топлива, гр/(л.с.*ч);
    Gt – часовой расход топлива, гр/ч;
    Ne – мощность, л.с
  • Переходят на другое положение дросселя L 2 =const при тех же оборотах n=const и повторяют испытания, и т.д. снимая всё семейство точек по нагрузкам для данных оборотов.

По полученным точкам строят графики:

На графике вполне очевидно прослеживается точка минимального удельного расхода для каждой нагрузки. Остается только соединить эти точки огибающей.

Всё вышеизложенное повторяют для других фиксированных оборотов.

Данное определение (абсолютно правильное) и данная методика (тоже замечательная), к сожалению, не дают простому человеку чёткого представления, для чего это всё нужно. Создаётся впечатление, что данные исследования представляют чисто академический или статистический интерес. Люди предпочитают пользоваться понятиями часового (кг/ч) или эксплуатационного (л/ 100 км) расхода, как интуитивно понятными, когда речь идёт об экономичности автомобиля. Попробую сделать интуитивно понятным параметр «Минимальный удельный расход топлива».

Начнём от печки. С законов сэра Исаака Н. Очевидно, что для того, чтобы автомобиль двигался по дороге с постоянной скоростью, Va сила, толкающая автомобиль (F) должна быть равна по величине и противоположна по знаку силам, которые не хотят, чтобы автомобиль толкали (сопротивление воздуха, сопротивление качению колёс, трение в трансмиссии и т.д.) Обозначим их Fс (сила сопротивления движению).

Если пересчитать силу F через радиус колеса и передаточные отношения трансмиссии, то получим крутящий момент (Мкр) на валу двигателя. Кстати, водитель, манипулируя педалью газа, фактически подсознательно стремится управлять именно моментом (а не обогащением или наполнением, про которые он при движении просто не помнит), придерживаясь желательной для него скорости движения или ускорения при разгоне (торможении).
Теперь вернёмся обратно на моторный стенд. Именно на нём мы сможем воочию увидеть крутящий момент. Только пользоваться мы будем не описанной выше классической методикой снятия нагрузочных характеристик. Для наглядности воспользуемся методикой, которую в дни моей молодости преподали мне дедушки отечественного впрыска, светлой памяти Лисицын Александр Иванович и Коганер Валентин Эдуардович. (Может быть, сейчас такой метод используется повсеместно, не знаю). Суть в том, что при постоянных оборотах (n=const), которые поддерживает стенд, мы держим постоянной не нагрузку L (как мы договорились – положение дросселя), а крутящий момент Мкр.

Читайте также:  Очень большой расход топлива на 406 двигателе

Выглядит это следующим образом: предположим, что мы собираемся ехать со скоростью Vа 1 , что соответствует оборотам n 1 и, для данных дорожных условий, силе F 1 или моменту Мкр 1 .

Вот их и воспроизведём на стенде.

  • Выставляем n = n 1 и выбираем открытие дросселя и подачу топлива для получение момента Мкр 1 .
  • Фиксируем все параметры двигателя, в том числе и часовой расход топлива, в журнале.
  • Уменьшаем топливоподачу. Момент, соответственно, падает. Но мы приоткрываем дроссель до тех пор, пока момент не вернётся в величину Мкр 1 . Что же получается? Ту же самую величину момента мы имеем при меньшей топливоподаче. А ещё меньше можно? Проверяем:
  • Ещё уменьшаем расход топлива, опять доводим дросселем момент до Мкр 1 . Имеем ещё меньший расход топлива при данном моменте. Обратите внимание: ключевые слова здесь – «при данном моменте». Т.е. мы говорим уже не просто о часовом расходе топлива, а о расходе топлива, отнесенном к конкретному крутящему моменту. Т.е. об удельном расходе топлива. То, что в размерности удельного расхода топлива присутствуют «лошадиные силы», а мы говорим о «ньютоно-метрах», не имеет никакого значения: мощность – это тот же момент, умноженный на обороты, которые, кстати, мы в ходе эксперимента не меняем.
  • Продолжаем экспериментировать с топливоподачей.

Понятно, что этот процесс имеет предел: в какой-то момент времени мы просто не сможем поддержать крутящий момент нужной нам величины. Но мы добились главного: нашли тот минимальный расход, при котором двигатель выдаёт нужный нам результат.

Дальше всё аналогично. Выберем себе другой Мкр = Мкр 2 . Вроде как едем с той же скоростью, но в гору (или с горы). Найдём там минимальный удельный расход. И так далее. Очевидно, что максимальный для данных оборотов момент мы получим при полностью открытом дросселе и вполне определённой (богатой, конечно) топливоподаче, изменить которую в меньшую сторону без потери момента мы не сможем (собственно, изменение в большую сторону тоже приведет к уменьшению момента). Это будет точка внешней скоростной характеристики. Но мы не будем расстраиваться, а перейдем к другим оборотам (скоростям автомобиля) и повторим для них все испытания.

В результате мы получим целую поляну регулировочных характеристик с известными удельными расходами топлива (среди которых будут и минимальные) в координатах «обороты-момент». Остается только выбрать, хотим ли мы в данной точке иметь минимальный удельный расход или готовы пожертвовать экономичностью в угоду другим задачам. Оптимальной работе нейтрализатора, например (α = 1 ).

Всё вышесказанное должно внести ясность в понятия «динамичная/экономичная прошивка». Какой смысл на частичном дросселе богатить смесь для получения максимального момента, если тот же момент можно получить при большем положении заслонки, но при меньшем расходе топлива? Понятно, что динамика автомобиля далеко не определяется статическими режимами, о которых тут идет речь, и которые конечно будут корректироваться на барабанах и на полигоне. Но базой для расчёта динамических режимов служат именно они.

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно справочно – информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями, описанными в части 2 на стр. 437 Гражданского Кодекса Российской Федерации.

Источник

Часовой и удельный расход топлива

Эффективная мощность

Мощность, полученная в цилиндрах двигателя, передаётся на коленчатый вал через КШМ. Передача энергии сопровождается механическими потерями, которые складываются из потерь на трение поршней о стенки цилиндров, в подшипниках коленчатого вала, механизме газораспределения, а также в механизмах, навешанных на двигатель и на «насосные» потери (в 4-х тактных ДВС).

Мощность полезная, развиваемая двигателем на фланце коленчатого вала, отдаваемая потребителю, называется эффективной мощностью (Ne), которая будет меньше индикаторной на величину механических потерь, затрачиваемых на трение и приведение в действие навесных механизмов. Тогда,

где, Nm — мощность механических потерь.

СРЕДНЕЕ ЭФФЕКТИВНОЕ ДАВЛЕНИЕ.

При определении эффективной мощности вводят понятие среднего эффективного давления (pe), которое выражается как:

Мы знаем, что такое pi ; аналогично вышесказанному можно придти к заключению, что среднее эффективное давление меньше среднего индикаторного на величину среднего давления механических потерь, т.е.

Тогда, подставляя в формулу индикаторной мощности вместо pi значение pe , получим Nе = 52,3D 2 ? pе ? Cm ? i [э.л.с.]

Используя формулу находят диаметр цилиндра D = √(Ne/52,3 ? Pe ? Cm ? z)

Крутящий момент — взаимосвязан с эффективной мощностью и характеризует нагрузку двигателя Me = 716,2 Ne/n [кГ ? м]

Эффективная мощность зависит от ряда параметров:

pе ? F ? S ? n ? k ? z

На основании этой зависимости строят графики, показывающие взаимосвязь мощности и параметров, определяющих её. Такие графики называются характеристиками двигателя. Различают скоростные, нагрузочные и винтовые характеристики.

Часовой расход топлива — измеряется в [кг/час] и применяется при нормировании топлива и отчётности (Gч).

Удельным называют часовой расход топлива, отнесённый к единице эффективной мощности. Gч

Связь между удельным расходом топлива и эффективным КПД устанавливается по формуле 632

Сравним значения удельного расхода топлива:

— малооборотные ДВС ge = 0,141-0.165 [кг/элс?ч]

— среднеоборотные ДВС ge = 0,150-0.165 [кг/элс?ч]

— высокооборотные ДВС ge = 0,165-0.180 [кг/элс?ч]

ПУТИ И СПОСОБЫ ПОВЫШЕНИЯ МОЩНОСТИ ДВС.

Читайте также:  Что такое детонация и как она влияет на двигатель

Увеличение мощности ДВС можно выполнить следующими способами:

1. Увеличением размеров цилиндров (диаметра — D, хода поршня — S) или количества цилиндров (z), при этом происходит увеличение габаритных размеров двигателя;

2. Повышением частоты вращения (числа оборотов — n), при этом снижается срок службы деталей т.к. растут скорости и силы инерции;

3. Переходом от 4-х тактных ДВС к 2-х тактным;

4. Наддувом двигателя, т.е. подачей в цилиндры воздуха под давлением, что позволяет сжечь больше топлива. Однако, механический наддув позволяет увеличить мощность при ухудшении экономических показателей, а газотурбинный — увеличить мощность при сокращении, или даже при некотором улучшении экономических показателей, например, если

Газотурбинный наддув 4-х тактных ДВС был осуществлён легко т.к. заполнение цилиндра и его очистка производится во время «насосных» ходов, а всасывающий и выхлопной тракты почти не сообщаются. Давление наддувочного воздуха может быть и больше и меньше давления выхлопа.

В 2-х тактных ДВС давление наддувочного воздуха должно быть больше давления в конце свободного выхлопа. Для этого должна быть достигнута мощность газов турбины, чтобы обеспечить давление наддува. Свободный выхлоп начинают раньше при большем давлении газов и уменьшают УОПТ. В результате этого, из-за догорания на линии расширения, температура газов и их кинетическая энергия будет больше. Кроме того, в наддутой машине уменьшается степень сжатия (E). Делается это для того, чтобы уменьшить Pc и Pz, и не допустить роста механических нагрузок.

Всё сказанное приводит к резкому ухудшению индикаторных показателей:

у ДВС с наддувом gi = 125-138 г/лс?ч;

у ДВС без наддува gi = 118-120 г/лс?ч.

Сохранение или даже улучшение эффективных показателей достигается за счёт резкого роста механического КПД. Он увеличивается потому, что механические потери при неизменных оборотах не растут т.к. Nm = f(n) ≈ const.

ТЕРМИЧЕСКИЙ, ИНДИКАТОРНЫЙ, ЭФФЕКТИВНЫЙ, МЕХАНИЧЕСКИЙ КПД.

Определение термического КПД было дано ранее. Несколько дополним его.

Термическим КПД называется отношение тепла, превращенного в полезную работу, ко всему подведенному теплу.

Термический КПД характеризует степень использования тепла в любой конструкции теплового двигателя, а следовательно, учитывает только тепловую потерю при отводе к холодильнику. Тогда формулу термического КПД можно написать в удобном для расчётов виде:

Термический КПД возрастает при увеличении степени сжатия, при увеличении показателя адиабаты k и при увеличении давления (степени повышения давления λ ).

Термический КПД снижается при увеличении степени предварительного расширения ρ .

Индикаторным КПД называется отношение количества теплоты, перешедшей в индикаторную работу (Qi), ко всему количеству теплоты, затраченной на получение этой работы (Qзатр). η i = Qi/Qзатрi=0,42-0,53).

632 — термический эквивалент 1 л.с..час [ккал]

Gч — часовой расход топлива;

Qр н – рабочая низшая теплотворная способность топлива.

Этот КПД характеризует тепловые потери с отработавшими газами, с охлаждающей водой, а также потери от неполноты сгорания топлива. Он учитывает всю сумму потерь тепла при осуществлении цикла. Это кроме тепла, уходящего с выхлопными газами, потери, обусловленные наличием теплообмена, неполным сгоранием топлива, недостаточно высокой скоростью сгорания топлива. Увеличение доли тепла, уходящего в стенки цилиндра и с выпускными газами, увеличение неполноты сгорания отрицательно сказывается на индикаторном КПД. С увеличением коэффициента избытка воздуха α индикаторный КПД как правило растёт.

В дизелях ηi ≈ 0.4-0.5

Эффективным КПД называется отношение количества теплоты, израсходованной на полезную работу двигателя (Qe), ко всему подведенному теплу (Q).

Он учитывает как тепловые, так и механические потери.

Зависимость между КПД выразится ηе= ηi ? ηm

На диаграмме показаны графики изменения КПД в зависимости от нагрузки при n=const. (η)

ηm ηi ηe

0 25 50 75 100 (Ne%)

Сравним дизеля с другими тепловыми машинами по эффективным значениям КПД:

— малооборотные ДВС ηе = 0.42-0.39 газовые турбины ηе = 0.42-0.31

— среднеоборотные ДВС ηе = 0.42-0.37 паровые машины ηе 0.30

— карбюраторные ДВС ηе = 0.20-0.28

Следовательно, по удельной затрате тепла, дизель самый экономичный. (ηе=0,35-0,42). Однако, в установках с паровыми турбинами применяется более дешёвый мазут и чем больше мощности, тем меньше разность в затратах у дизелей и паровых турбин. А так как турбины имеют ещё ряд преимуществ по сравнению с дизелями, то их на больших мощностях используют чаще. Дизеля сохраняют свою конкурентоспособность в установках мощностью до 45000 л.с.

Механическим КПД называется отношение эффективной мощности к индикаторной, или мощность механических потерь.

Механический КПД показывает ту часть индикаторной мощности, которую желательно бы превратить в полезную эффективную работу.

Этот КПД учитывает:

— потери на трение движущихся частей, которые зависят от: материалов, качества изготовления конструкции, обработки и сборки деталей, скорости движения отдельных узлов, давлений в сопряжениях (более половины этих потерь уходит на сопряжение втулка–поршень), качества масла, и т.д.;

— «насосные» потери. В 4-х тактных ДВС к «насосным» потерям относятся затраты энергии на преодоление сопротивлений при очистке цилиндров от продуктов сгорания. Они зависят от моментов открытия впускных и выпускных клапанов (см. круговую диаграмму газораспределения). При позднем открытии впускного клапана давление всасывания будет ниже. При позднем открытии выпускного — давление выпуска будет выше. В обоих случаях увеличивается площадь отрицательной работы. Мощность, затрачиваемая на «насосные» хода, при наддуве может превратиться в полезную работу. (Один из путей повышения КПД.)

— потери затрат мощности приводов навешанных на двигатель механизмов, (характеризует рациональность конструкции);

Для уменьшения механических потерь необходимо содержать и обслуживать двигатель в хорошем техническом состоянии. Поддерживать все необходимые зазоры в рекомендуемых заводом-изготовителем инструкциях, правильно выбирать качество и сорт смазочных материалов. Соблюдать соответствующие температурные режимы, регулировку нагрузки по цилиндрам, температуру воды, масла, чистоту коллекторов, и т.д.

Читайте также:  Как увеличить компрессию двухтактного двигателя

Значения механического КПД

2-х тактные ДВС 4-х тактных ДВС без наддува ηm = 0.75-0.85 без наддува ηm = 0.75-0.85

с наддувом ηm = 0.86-0.93 с наддувом ηm = 0.85-0.95

ЭКСПЛУАТАЦИЯ ДВС

ВЛИЯНИЕ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ НА РАБОТУ ДИЗЕЛЯ.

При изменении нормальных атмосферных условий (температура t = 20°C; барометрическое давление Pбар = 760 мм.рт.ст.; относительная влажность φ = 70%) происходит изменение массового заряда воздуха в цилиндре, а именно: массовый заряд уменьшается при повышении температуры воздуха, при снижении барометрического давления, при увеличении относительной влажности воздуха.

При этом:

1. Уменьшается среднее индикаторное давление pi ;

2. Уменьшается коэффициент избытка воздуха α ;

3. Увеличивается температура выхлопных газов Tвг;

4. Увеличивается теплонапряжённость деталей ЦПГ;

5. Снижается мощность двигателя.

При повышении температуры воздуха, поступающего в цилиндры, уменьшается степень воздушного заряда, а следовательно и коэффициент избытка воздуха. Это приводит к ухудшению сгорания топлива и повышению его расхода. Уменьшается pi, а значит и мощность двигателя. Из-за повышения температуры воздушного заряда повысится температура выхлопных газов, а значит увеличится средняя температура цикла и теплонапряжённость двигателя.

Во избежание тепловой перегрузки двигателя необходимо контролировать его работу по максимальному давлению сгорания (Pz) и по температурам отработавших газов, не допуская их увеличения выше номинальных значений.

Для улучшения параметров необходимо уменьшать подачу топлива за цикл. Это вызывает падение pi и снижение оборотов гребного вала при работе на ВФШ и, как следствие, уменьшение скорости движения судна. В практике эксплуатации главных двигателей принято считать, что при увеличении температуры воздуха на 10°C необходимо либо снизить частоту вращения на 2%, либо уменьшить шаг винта на 3%.

При повышении влажности воздуха уменьшается содержание сухого воздуха в цилиндрах. При этом также изменится (α). В результате ухудшатся условия сгорания, а это также приведёт к уменьшению pi и следовательно — мощности двигателя. Температура газов несколько возрастёт, что будет приводить к перегрузке ДВС.

Кроме того, влияния влажности способствует изменению мощности и возникновению коррозии в цилиндрах двигателя, особенно при работе на сернистых топливах. Поэтому необходимо следить, чтобы во впускном тракте не создавались условия выпадения росы. Точка росы для каждого дизеля с наддувом и воздухоохладителем указывается в его паспорте и формуляре.

ХАРАКТЕРИСТИКИ ДВС.

Полное использование мощностей судовых дизелей — одна из главных задач судового механика. Важно, чтобы двигатель работал на такой мощности, которая не выходила бы за пределы его действительных возможностей. Чтобы грамотно решить этот вопрос необходимо знать характеристики дизеля и основы его взаимодействия с потребителем энергии. Режим работы дизеля характеризуется совокупностью параметров: мощностью, экономичностью, частотой вращения, тепловыми и механическими нагрузками.

Показатели работы двигателей условно подразделяются на:

1) энергетические — Ni, Ne, Me, pi, pe, n ;

2) экономические — Gч, ge, ε, (i) ;

3) эксплуатационные – давления и температуры, фиксируемые штатными приборами, а также ряд дополнительных параметров, дающих возможность судить о тепловой и механической напряжённости двигателя.

Тепловая напряжённость – в прямой зависимости от нагрузки, характеризуется средним индикаторным давлением или положением рейки ТНВД. Контролируются температуры выхлопных газов (Tв.г.), воды (Tв) и масла (Tм). В последнее время в судовых условиях производят замеры температуры втулок в верхней части цилиндров и в зоне продувочных окон, а также донышка поршня и рамовых подшипников.

Механическая напряжённость — основным критерием которого является максимальное давление сгорания топлива (Pz) и сила инерции движущихся масс (Pj).

Если при работе дизеля его параметры остаются постоянными, то режим называется установившимся. Переход от одного установившегося режима к другому может произойти самопроизвольно под влиянием путевых условий; автоматически — под воздействием регулятора; или вручную — путём воздействия оператором на рейку управления ТНВД.

При достаточном времени выдержки между режимами можно получить совокупность установившихся режимов, связанных между собой закономерным изменением параметров работы двигателя.

Совокупность установившихся режимов, представленная в виде аналитических, табличных или графических зависимостей от основного, заранее выбранного параметра, называется характеристикой дизеля. При этом, если за основной параметр принимают нагрузку, то характеристика называется нагрузочной, а если частоту вращения — то характеристика называется скоростной.

НАГРУЗОЧНЫЕ ХАРАКТЕРИСТИКИ

Зависимость параметров работы двигателя от его нагрузки при постоянной частоте вращения называется нагрузочной характеристикой. За независимое переменное принимается Ne или pe, или какое то их отношение, например pe/peном. На оси ординат откладываются любые, интересующие нас параметры. Как пример, рассмотрим характеристику ge=f(Ne).

Нагрузочные характеристики, снятые при различных оборотах, не совпадают между собой. Поэтому в эксплуатации строят графики совмещённых характеристик, по которым легко определить значение любого параметра, соответствующего данной нагрузке и частоте вращения.

Главные двигатели, при прямой передаче на винт и имеющие всережимный регулятор, в определённых условиях (при изменении нагрузки на винт на мелководье, на поворотах и т.д.) работают по нагрузочной характеристике, если положение органов управления регулятором остаётся неизменным.

Из графика видим, что при данном числе оборотов (n=const) минимальный удельный расход топлива приходится на режим ≈90% полной нагрузки. К сожалению работать постоянно на таком режиме двигатель не может, т.к. меняется и загрузка судна и окружающие условия (глубина фарватера, направление и сила ветра, течения и др.) Но учитывать это надо и при возможности добиваться работы на такой мощности.

Проще обстоит дело с загрузкой дизель-генераторов. Нагрузочная характеристика при номинальных оборотах (nном) приближённо отражает его работу на генератор.

СКОРОСТНЫЕ ХАРАКТЕРИСТИКИ

Скоростная характеристика — зависимость параметров двигателя от частоты его вращения. В зависимости от условий, при которых они получены, скоростные характеристики подразделяются на внешние , винтовые и ограничительные .

На рис. показан общий вид скоростной характеристики, где изменяя количество подаваемого топлива, мы получаем разные обороты и соответствующие им значения выбранных параметров (дв. 6Ч25/34).

Источник

Adblock
detector