Удельный расход топлива авиационных двигателей

ХАРАКТЕРИСТИКИ АВИАЦИОННЫХ ПОРШНЕВЫХ ДВИГАТЕЛЕЙ

Общие сведения о характеристиках

Для правильной эксплуатации двигателя необходимо знать изменение его эффективной мощности и удельного эффективного расхода топлива в зависимости от условий работы. Значения мощности и расхода топлива при различных условиях работы двигателя определяются по его характеристикам.

Характеристиками двигателя принято называть зависимости его эффективной мощности Ne и эффективного расхода топлива Сe, от какой-либо величины, по изменению которой в условиях эксплуатации мы устанавливаем или контролируем режим работы двигателя.

Мощность, развиваемая двигателем, и удельный расход топлива зависят, в основном, от частоты вращения коленвала, давления наддува и от давления и температуры атмосферного воздуха, т. Е. от высоты полета. Эти же величины удобнее всего поддаются измерению и контролю в условиях эксплуатации. Поэтому изменение мощности и удельного расхода топлива двигателя при­нято определять в зависимости от числа оборотов, давления наддува и высоты полета.

Характеристики двигателя представляются обычно в форме графиков, в которых по оси ординат откладываются значения эффективной мощности Ne исоответствующего ей удельного эффективного расхода топлива (иногда откладываются дополнительно и другие величины, характеризующие работу двигателя, например часовой расход топлива, давление наддува и т. Д.), а по оси абсцисс — та величина, от которой дается зависимость этих величин, т. Е. частота вращения коленвала, давление наддува, высота полета и пр.

Характеристики двигателя могут быть получены путем расчета или по результатам испытания двигателей на стенде. Основными характеристиками, имеющими наибольшее практическое значение, являются характеристики по частоте вращения коленвала — внешняя и винтовая, а также характеристики в зависимости от высоты полета — высотные характеристики.

Внешняя характеристика двигателя

Внешней характеристикой двигателя называется зависимость эффективной мощности и эффективного удельного расхода топлива от частоты вращения коленчатого вала при работе двигателя на земле и при полном открытии дроссельной заслонки.

При работе двигателя по внешней характеристике состав смеси на всех оборотах поддерживается постоянным и отрегулированным на максимальную мощность. Опережение зажигания устанавливают наивыгоднейшее, т. Е. такое, которое обеспечивает получение максимальной мощности и отсутствие детонации.

Изменение частоты вращения коленвала при снятии внешней характеристики достигается изменением внешней нагрузки на вал двигателя за счет применения гидравлических тормозов или изменения шага винта (см. приложение 1).

Внешняя характеристика двигателя АШ-62ИР при полностью открытых дроссельных заслонках показана на рис.3 (кривые 1 и 3). Как видно из рисунка, эффективная мощность Ne и эффективный удельный расход топлива Се с увеличением числа оборотов непрерывно растут.

Увеличение эффективной мощности происходит в результате увеличения числа циклов в единицу времени и среднего эффективного давления ре. Последнее обусловлено ростом весового заряда смеси за счет повышения давления наддува с увеличением частоты вращения коленвала (увеличение частоты вращения коленвала с 1700 до 2200 об/мин увеличивает ре на 1 кгс/см 2 ).

Рис.3. Внешняя характеристика двигателя АШ-62ИР:

1— эффективная мощность (Ne) при полностью открытой дроссельной заслонке; 2— эффективная мощность(Ne) при рк=900 мм.рт.ст.;3— эффективный удельный расход топлива (Ce) при полностью открытой дроссельной заслонке

Характер изменения Се по внешней характеристике определяется в основном характером изменения hм, который с увеличением частоты вращения коленвала непрерывно уменьшается. Индикаторный к. п. д. hi, при этом практически не меняется, так как коэффициент избытка воздуха изменяется очень мало.

Внешняя характеристика при полностью открытой дроссельной заслонке показывает наибольшие мощности, которые возможно получить от двигателя при различной частоте вращения коленвала числах. Для двигателей с наддувом, кроме этой характеристики, обычно дастся также внешняя характеристика при неизменном расчетном давлении наддува рк, равном номинальному (кривая 2 на рис.3). Здесь частота вращения, как и в первом случае, изменяется изменением нагрузки на вал двигателя, а постоянный наддув по мере увеличении числа оборотов поддерживается прикрытием дроссельных заслонок. Внешняя характеристика при неизменном рк, соответствующему рк номинального режима, показывает наибольшие мощности, на которых двигатель может надежно работать продолжительное время (не менее 1 ч).

Винтовая характеристика

Винтовой характеристикой называется зависимость эффективной мощности и эффективного удельного расхода топлива от числа оборотов при работе двигателя с винтом фиксированного шага.

При снятии винтовой характеристики число оборотов изменяется путем изменения количества подачи топлива при различных положениях дроссельной заслонки. Обычно для двигателя дается одна винтовая характеристика, соответствующая его работе с винтом, установленным на самый малый шаг. С таким винтом двигатель развивает взлетную мощность и частоту вращения коленвала при полностью открытой дроссельной заслонке.

Винтовая характеристика двигателя АШ-62ИР дана на рис.4. Как видно из рисунка, с увеличением частоты вращения эффективная мощность двигателя непрерывно повышается, а удельный расход топлива сначала снижается, а затем также повышается.

Рис.4. Винтовая характеристика двигателя АШ-62ИР

Эффективная мощность двигателя при любой установившейся частоте вращения равна мощности, потребляемой винтом на свое вращение. Если этого равенства не будет, то частота вращения коленвала двигателя будет увеличиваться или уменьшаться. Мощность, потребляемая данным винтом, изменяется прямо пропорционально кубу частоты его вращения. Следовательно, и эффективная мощность двигателя по винтовой характеристике изменяется по тому же закону.

Читайте также:  Что лучше отмывает нагар в двигателе

Характер изменения эффективного удельного расхода топлива по винтовой характеристике определяется характером изменения hi, и hм от частоты вращения. Изменение hi в основном зависит от изменения качества смеси (a) при изменении частоты вращения, т. Е. от регулировки карбюратора (см. приложение 2). Значительное обогащение смеси на малом газе и взлетном режиме приводит к уменьшению hiи к соответствующему увеличению эффективного удельного расхода топлива. Более бедные смеси на крейсерских числах оборотов приводят к повышению hi и снижению Се.

С увеличением числа оборотов hм непрерывно увеличивается, что приводит к снижению Се. Рост hм объясняется тем, что с увеличением частоты вращения эффективная мощность по винтовой характеристике и мощность нагнетателя растут пропорционально кубу частоты вращения, а мощность механических потерь — пропорционально квадрату частоты вращения , т. Е. более медленно. Следовательно, индикаторная мощность (Ni=Nе+Nм+Nн) растет медленнее, чем Ne, и поэтому hм возрастает. Совместное влияние hi и определяет общий характер изменения Се, по винтовой характеристике, причем решающее влияние оказывает hi, т. Е. регулировка карбюратора — фактор сугубо эксплуатационный.

4.4. Высотные характеристики

Высотной характеристикой называется зависимость эффективной мощности и эффективного удельного расхода топлива от высоты полета при постоянной частоте вращения коленвала, качестве смеси и давлении наддува, равном номинальному.

Номинальное давление наддува поддерживается постоянным до такой высоты, на которой оно достигается при полностью открытых дроссельных заслонках и номинальной частоте вращения. Эта высота называется расчетной.

Как видно из рис. 5, эффективная мощность двигателя АШ-62ИР увеличивается с подъемом до расчетной высоты (на 20 л. С.), а затем уменьшается. Эффективный удельный расход топлива, наоборот, с подъемом до расчетной высоты снижается, а затем возрастает.

Увеличение мощности с подъемом до расчетной высоты обусловливают следующие факторы:

— уменьшение наружной температуры (а следовательно, и температуры смеси за нагнетателем; при постоянном рк приводит к увеличению удельного веся смеси поступающей в цилиндры, и ее весового заряда;

— уменьшение противодавления на выхлопе с подъемом на высоту способствует лучшей очистке цилиндров от остаточных газов, что также приводит к увеличению весового заряда смеси;

— понижение давления в картере приводит к снижению затрат мощности на выполнение насосных ходов, так как с увеличением высоты возрастает положительная работа в такте впуска.

На высоте, превышающей расчетную, мощность двигателя снижается, как и у невысотного двигателя, в результате уменьшения плотности воздуха. При этом мощность уменьшается интенсивнее, чем плотность воздуха.

Рис. 5. Высотная характеристика двигателя АШ-62ИР

Характер изменения эффективного удельного расхода топлива Се в зависимости от высоты полета определяется исключительно изменением hм с высотой. При этом величина hм определяется соотношением только индикаторной мощности и мощности механических потерь, так как мощность, потребляемая нагнетателем NН, на всех высотах изменяется пропорционально Ni и на механический к.п.д. влияния не оказывает.

До расчетной высоты индикаторная мощность Ni увеличивается, а мощность механических потерь NМ уменьшается за счет указанных выше факторов. Следовательно с подъемом до расчетной высоты увеличивается, а Се уменьшается.

На высотах больше расчетной индикаторная мощность уменьшается интенсивнее, чем мощность механических потерь, в результате чего Nе, уменьшается, а Се возрастает.

Высотная характеристика обычно дается не только для номинальных, но и для других частот вращения. Серия таких высотных характеристик мощности двигателя АШ-62ИР дана на рис. 6. Пользуясь этим графиком, можно определить высоты, на которых возможно получить требуемую крейсерскую мощность при различных числах оборотов.

Рис.6. Серия высотных характеристик мощности двигателя АШ-62ИР

Источник

Сколько топлива жрут самолеты?

Если вы бесконечно сетуете на повышенный расход бензина вашей машиной и на постоянное увеличение стоимости топлива, то ознакомьтесь с аналогичными подробностями в авиации.

В последние десятилетия в авиастроении идет жесточайшая битва за экономию. Учитывая колоссальные масштабы авиаперевозок, даже снижение расхода топлива всего на 1% стоит того, чтобы за него бороться. Поэтому и появляются все более экономичные двигатели, используются законцовки крыла , и вообще применяются любые ухищрения, помогающие экономии.

Если среди автомобилистов расход топлива принято выражать в количестве потраченных литров на 100 километров, то в авиации система немного другая. Существует целых три показателя расхода воздушного судна:

  • Почасовой расход топлива. Это количество израсходованного топлива за один час полета с крейсерской скоростью и максимальной загрузой.
  • Километровый расход топлива. Это количество израсходованного топлива, потраченного на один километр полета с крейсерской скоростью и максимальной загрузкой.
  • Удельный расход топлива. Это количество израсходованного топлива на единицу расстояния или времени, относительно мощности двигателей воздушного судна. По сути, это топливная эффективность самолета.

Само же количество потраченного топлива измеряется не в литрах, а в килограммах, и при заправке самолета рассчитывается с запасом.

Приведем примеры расхода топлива у самых популярных самолетов.

  • Ту-154Б2 – 6200 кг/ч
  • Ту-144 – от 29000 до 39000 кг/ч
  • Сухой Суперджет 100 – 1700 кг/ч
  • Ан-225 Мрия – 15900 кг/ч
  • Як-40 – 1500 кг/ч
  • Concorde – 20500 кг/ч
  • Ан-2 («Кукурузник») – 131 кг/ч
  • Airbus A300-600R – 5200 кг/ч
  • Airbus A320neo – 2100 кг/ч
  • Airbus A380 – 12500 кг/ч
  • Bombardier Dash 8-Q400 – 1060 кг/ч
Читайте также:  Тиристорный запуск асинхронного двигателя схема

Такие колоссальные объемы топлива, которые расходуют в полете самолеты, стоят немалых денег. На данный момент стоимость одной тонны авиационного топлива в среднем составляет около 54000 рублей. И понятно желание владельцев самолетов, чтобы двигатели работали на земле вхолостую как можно меньше, ведь основной доход самолет приносит, будучи в воздухе.

Источник

Расход топлива разных самолетов

Бизнес и финансы

БизнесБанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги – контрольЦенные бумаги – оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитПромышленностьМеталлургияНефтьСельское хозяйствоЭнергетикаСтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьер

Часовой расход топлива

Часовой расход топлива – это количество используемого горючего за один час полета. Этот расчет всегда без исключения берется при крейсерской скорости и максимальной коммерческой загрузке авиалайнера и рассчитывается в единице – кг/ч.

Крейсерская скорость – это скорость, на которой производят все пассажирские перевозки. Она составляет примерно 60-80% от максимальной ввиду безопасности и дополнительного веса.

Максимальная коммерческая загрузка – это максимально разрешенный вес пассажиров, багажа, техники и иных грузов на борту самолета.

В среднем составляет от 1 до 15 тыс. кг в час.

Для чего определяют топливный расход

Расход топлива самолета является, пожалуй, основным показателем, отражающим эффективность эксплуатации воздушного судна. Чем ниже расход топлива для какой-то определенной модели всегда, тем меньшее количество издержек проносит его эксплуатация авиакомпании.

Стоит отметить, что нередко данные о топливной эффективности самолетов различаются в зависимости от источника, предоставляющего эти сведения: разные авторы используют различающиеся методики подсчета показателей.

В самолет заправляется разное количество топлива. Определяющим показателем в этом вопросе является направление перелета. Например, если судну нужно совершить рейс на близкое расстояние, а сама модель является дальнемагистральной, то топлива могут и не долить. Это делают по нескольким причинам:

  • чтобы судно не перевозило лишний груз;
  • чтобы не происходил перерасход денежных средств.

Помимо направления перелета, на количество вливаемого топлива также влияет наличие хотя бы одного запасного аэродрома на маршруте, погодные условия и некоторые другие факторы. У каждой модели есть свои показатели и свои нюансы, которые должны учитываться специалистами.

Несколько лет назад пилотам запретили облетать грозу в целях экономии, но после нескольких авиакатастроф, такие запреты были сняты ради обеспечения безопасности человеческих жизней.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сфере

Разделы

  • Реестр
  • Эксплуатация
  • Производство
  • История
  • Самолёт
  • Испытания
  • Обучение
  • Биографии
  • Отзывы пилотов
  • Пассажиры
  • Заказчики
  • Мифы СМИ
    • “Не русский самолет”
    • “Камней наглотает”
    • “Стоит $7 млрд”
    • “Убили Ту-334”
    • “Разрушили все КБ”
    • Катастрофа в Индонезии
    • Чёрный маркетинг
    • Разборы статей
    • Полный список мифов
  • Конкуренты
  • Блогеры
  • Пресса
  • Фотографии
  • Инфографика
  • Видеотека
  • Форум
  • Полезные ссылки
  • ВКонтакте->
  • Facebook->
  • Google+>
  • MC-21->
  • Registry
  • English

e-190
interjet
sam-146
sky
авиа
ан-148
Аэрофлот
безопасность
брэо
Видео
Газпром
ГСС
деньги
заказчики
инцидент
испытания
история
конкуренты
мифы
Московия
отзыв
производство
российский?
сми
сравнение
фото
цос
эксплуатация
ЮТэйр

Расход топлива у разных самолётов

Советские самолёты

ОКБ Туполева

  • Ту-134А 3500 кг/ч
  • Ту-154А/Б/Б-2 6200 кг/ч
  • Ту-154М 5500 кг/ч. за первый час взлёта и набора высоты, следующие часы по 4200-4700 кг/ч.
  • Ту-204-100 3600 – 4000 кг/ч.
  • Ту-204-120 3300 кг/ч.
  • Ту-214 3200 кг/ч.
  • Ту-334 1й час 2200 кг., следующие часы по 1600 кг/ч.

ОКБ Ильюшина

  • Ил-62 1й час 8000 кг, следующие 7000-6000 кг/ч, последний 5000 кг
  • Ил-76 8000 кг ч
  • Ил-86 10800-11500 кг/ч
  • Ил-96-300 1й час 8300 кг, следующие 7500 кг/ч, два последних 5000 кг
  • Ил-96-400 1й час 8600 кг, следующие 7900 кг/ч, два последних 5500 кг
  • Ил-114 1й час 650 кг, следующие 550 кг

ОКБ Яковлева

  • Як-40 1150 кг/ч
  • Як-42 2350-3150 кг/ч

ОКБ Антонова

  • Ан-3 250 кг/ч
  • Ан-12 2500 кг/ч
  • Ан-22

9500кг/ч на взлете, двигатель НК-12МА

  • Ан-24 1-й час 1200 кг/ч, потом 800 кг/ч
  • Ан-26 1000кг/ч
  • Ан-32 1000 кг/ч
  • Ан-38-100 360 кг/ч
  • Ан-38-200 350 кг/ч
  • Ан-74ТК-200 1714 кг/ч
  • Ан-74ТК-300 1565 кг/ч
  • Ан-124-100 примерно 17000 кг/ч первый час полета, каждый последующий 12600 кг/ч
  • Ан-140 560 кг/ч
  • Ан-148-100 1500 кг/ч
  • Зарубежные самолёты

    Боинг
    • Boeing 757—200 4200 л/ч Двигатель Rolls Royce RB211-535R4
    • Boeing 737—500 3000 л/ч Двигатель CFM56-3
    • Boeing 767-300- 4500 кг/ч
    • Boeing 727-200 – 5,018 кг/ч
    • Boeing C-17 Globemaster III Двигатель F117-PW-100 0,33/кгс

    4700 кг/ч Pratt & Whitney F117-PW-100
    C-5 Galaxy Двигатель TF39-GE-1C 0,715/кгс

    10000 кг/ч Модификация C-5M Двигатель CF6-80C2 0.307 – 0.344/кгс Model CF6-80C2

    Макдонелл Дуглас
    • MD-83 3400 л/ч Двигатель Pratt & Whitney JT8D-219
    Локхид Мартин

    2300 кг/час Двигатель Allison T56-A-15
    C130-E на рулении

    1370 Первый час

    3250 кг/час далее

    Евросоюз

    • Fokker 50 Расход топлива 800 л/ч Двигатель P&W 125 B
    Аэробус
    • A310 4000-5008 кг/час
    • A320 — 2200 кг/час
    Читайте также:  Какой датчик отвечает за обороты двигателя ваз 2107
    Характеристическое время Шаг винта >>>

    Перечень моделей авиалайнеров и их топливный расход

    • Ан-2: удельная затрата горючего – 42 г/пасс.-км, часовая затрата горючего – 0,131 тыс. кг/ч;
    • Ан-140-100: 24,4 г/пасс.-км, 0,55 тыс. кг/ч;
    • Ан-38-100: 43,7 г/пасс.-км, 0,38 тыс. кг/ч;
    • Ан-24: 36,0 г/пасс.-км, 0,86 тыс. кг/ч;
    • Ил-86: 34,5 г/пасс.-км, 10,4 тыс. кг/ч;
    • Ил-96-300: 26,4 г/пасс.-км, 7,8 тыс. кг/ч;
    • Ил-114-100: 20,8 г/пасс.-км, 0,59 тыс. кг/ч;
    • Як-40: 79,4 г/пасс.-км, 1,241 тыс. кг/ч;
    • Як-42Д: 35,0 г/пасс.-км, 3,1 тыс. кг/ч;
    • Ту-104Б: 75 г/пасс.-км, 6 тыс. кг/ч;
    • Ту-134А: 45,0 г/пасс.-км , 3,2 тыс. кг/ч;
    • Ту-154М: 31,0 г/пасс. Км, 5,3 тыс. кг/ч;
    • Ту-204-300: 27,0 г/пасс.-км, 3,25 тыс. кг/ч;
    • Ту-214: 19,0 г/пасс.-км, 3,7 тыс. кг/ч;
    • Ту-334: 23,4 г/пасс.-км, 1,7 тыс. кг/ч;
    • Ту-144С: 230,0 г/пасс.-км, 39 тыс. кг/ч;
    • Boeing 707-320: часовая затрата горючего – до 7,2 тыс. кг/ч;
    • Boeing 717-200: 2,2 тыс. кг/ч;
    • Boeing 727-200: 4,3 тыс. кг/ч;
    • Boeing 737-300: топливная эффективность – 22,5 г/пасс.-км, часовая затрата горючего – 2,4 тыс. кг/ч;
    • Boeing 737-400: 20,9 г/пасс.-км, 2,6 тыс. кг/ч;
    • Boeing 747-300: 22,4 г/пасс.-км, 11,3 тыс. кг/ч;
    • Boeing 757-200: 23,4 г/пасс.-км; 3,25 тыс. кг/ч;
    • McDonnell Douglas MD-83: часовая затрата горючего – 3,1 тыс. кг/ч;
    • McDonnell Douglas MD-90: 2,65 тыс. кг/ч;
    • Airbus A320-200: топливная эффективность – 19,1 г/пасс.-км, часовая затрата топлива — 2,5 тыс. кг/ч;
    • Airbus A321-100:— 23,2 г/пасс.-км, 2,885 тыс. кг/ч;
    • Airbus A380: удельная затрата горючего – 2,9 на одного пассажира и 100 км пути, часовая затрата топлива – до 13 тыс. кг/ч;
    • Fokker 50 : часовой расход горючего – 0,64 тыс. кг/ч;
    • Embraer EMB-120ER: топливная эффективность — 27,6 г/пасс.-км, часовой топливный расход – 0,39 тыс. кг;
    • Bombardier CRJ 200: 35,9 г/пасс.-км, 1,1 тыс. кг/ч;
    • Sukhoi Superjet 100: расход горючего на час – 1,7 тыс. кг/ч;
    • МС-21-300: удельная затрата топлива –15,1 г/пасс.­км;
    • МС-21-400: 15,1 г/пасс.­км;
    • Concorde: часовая затрата горючего – 20,5 тыс. кг/ч;
    • Avro Canada C102: удельная затрата горючего – 109 г/пасс.-км, часовая 2,7 тыс. кг/ч;
    • Vickers Vanguard: часовая затрата горючего – 2,1 тыс. кг/ч;
    • Bristol Britannia 314: 2,2 тыс. кг/ч;
    • De Havilland Comet 4B: 5,2 тыс. кг/ч;
    • Breguet 941: 1,2 тыс. кг/ч;
    • Hawker-Siddeley Trident 3B: 4,65 тыс. кг/ч;
    • BAC One-Eleven 475: 2,3 тыс. кг/ч;
    • Sud-Aviation Caravelle 11R: 2,6 тыс. кг/ч;
    • Dassault Mercure: 2,8 тыс. кг/ч;
    • Convair 990A: 5,8 тыс. кг/ч.

    У разных типов двигателей

    Бензиновый двигатель способен преобразовывать лишь около 20—30 % энергии топлива в полезную работу (КПД = 20—30 %) и, соответственно, имеет высокий удельный расход топлива. Дизельный двигатель обычно имеет КПД 30—40 %, дизели с турбонаддувом и промежуточным охлаждением — свыше 50 %. Например, дизель MAN B&W S80ME-C7 при КПД 54,4 % тратит всего 155 г топлива на полезную работу в 1 кВт·ч (114 г/(л.с.·ч))[1].

    Дизельные двигатели

    • Беларус-1221 — на тракторе установлен шестицилиндровый рядный дизельный двигатель с турбонаддувом. Удельный расход топлива при номинальной мощности — 166 г/(л.с.·ч);
    • К-744 (трактор) — удельный расход топлива при номинальной мощности — 174 г/(л.с.·ч);
    • Wärtsilä-Sulzer RTA96-C (Вяртсиля-Зульцер Серия двухтактных турбокомпрессорных дизельных двигателей) — 171 г/(кВт·ч) (126 г/(л.с.·ч) (3,80 л/с))

    Газотурбинные двигатели

    • газотурбинный агрегат МЗ с реверсивным редуктором (36 000 л.с., 0,260 кг/(л.с.·ч), ресурс 5000 ч) для больших противолодочных кораблей;
    • двигатели второго поколения М60, М62, М8К, М8Е с повышенной экономичностью (0,200—0,240 кг/(л.с.·ч)) [2].

    Авиационные двигатели

    • АШ-82 — удельный расход топлива 0,381 кг/(л.с.·ч) в крейсерском режиме;
    • АМ-35А — удельный расход топлива 0,285—0,315 кг/(л.с.·ч);
    • М-105 — удельный расход топлива 0,270—0,288 кг/(л.с.·ч);
    • АЧ-30 — авиационный двигатель, удельный расход топлива составляет 0,150—0,170 кг/(л.с.·ч).

    Кто ведет расчет

    Для заправки авиалайнеров применяют специальные нефтяные фракции, их называют авиакеросином, или авиационным топливом. Чтобы рассчитать необходимое количество на конкретный полет, привлекается узкий круг специалистов, только им известны формулы для каждой модели.

    Складывается расчет по следующей схеме:

    • берут массу авиационного бензина, которая потребуется, чтобы перелететь из города М в город Д с коммерческой нагрузкой С;
    • фиксируют количество горючего, необходимого при перемещении из города Д до запасной аэродромной площадки, расположенной на максимальном удалении по полетному плану;
    • расход авиакеросина при дополнительных облетах во время посадки;
    • прибавляют к данному объему топлива 6 % для запасного хранения.

    В случае аварийной посадки самолет должен сбросить остаток керосина, чтобы от удара не было возгораний от большого количества легко воспламеняемого вещества.

    В качестве заключения можно подвести итог:

    • самая ответственная, старая и актуальная задача при создании конструкции самолета – его расход горючего;
    • топливная эффективность характеризуется тремя показателями: часовыми, километровыми, удельными затратами ресурсов;
    • топливные издержки – это не точные величины, на них оказывают влияние внешние и внутренние факторы;
    • удельное и часовое питание колеблется у каждого лайнера по разным диапазонам.

    Расчет авиационного керосина ведут специалисты из технического персонала, отдельно на каждый самолет перед его маршрутом они применяют формулы, разработанные для определенных авиалайнеров. Полученный результат увеличивают, чтобы всегда был запас. Для длительных перелетов существует особая дозаправка в воздухе. В точку вылетают грузовые дозаправщики для выполнения скрупулезного, ответственного на рассчитанной высоте дела.

    Источник

    Adblock
    detector