Турбовинтовой двигатель самолета принцип работы

Турбовинтовой двигатель.

Привет!

Транспортный самолет АН-8 с двигателями АИ-20.

Сегодня продолжаем более подробно говорить о типах авиационных двигателей. На повестке дня следующий тип – турбовинтовой двигатель ( ТВД ).
Кто читал мои статью здесь, тот конечно, знает, что турбовинтовой двигатель – это разновидность газотурбинного.

Газотурбинный двигатель – это тепловая машина и, как в любой тепловой машине, в нем есть устройство расширения, которым является турбина. Ну, а турбина нужна в первую очередь, чтобы вращать компрессор, а во вторую, для привода различных дополнительных агрегатов, то есть полезной нагрузки. Это может быть, например, электрогенератор, винт в судовой установке, а применительно к авиации – винт воздушный или же вспомогательная силовая установка (ВСУ).

Получается, что турбину можно как бы условно разделить на две части – турбину компрессора и турбину полезной нагрузки. Последнюю еще называют свободной турбиной . Часто на практике их так и делают в виде двух агрегатов. Если свободную турбину убрать, то останется неиспользованная часть энергии газового потока ( так называемая свободная энергия ), которая потом в реактивном сопле двигателя может быть преобразована в кинетическую энергию, и мы получим тягу двигателя за счет реакции струи. Вы уже наверное поняли :-), что в этом случае мы будем иметь турбореактивный двигатель.

Однако возможен и промежуточный вариант. То есть часть свободной энергии (большую) можно использовать для полезной нагрузки, а оставшуюся часть (меньшую) для работы в сопле, то есть для получения реактивной тяги. Вот именно по такому принципу и устроен турбовинтовой двигатель. Полезная нагрузка для него – это вышеупомянутый воздушный винт. Справедливости ради стоит сказать, что реактивная тяга играет для ТВД небольшую роль. Доля ее обычно не более 15% (на современных ТВД и того меньше).

Принципиальное устройство турбовинтового двигателя.

Итак классический ТВД по конструкции очень похож на обычный турбореактивный двигатель. У него есть компрессор , камера сгорания , турбина и сопло . Но добавлен еще один важный агрегат. Дело в том, что частота вращения ротора любого газотурбинного двигателя очень высока (до 30000 об/мин), а воздушный винт при таких оборотах работать не может. Поэтому между ротором двигателя и винтом устанавливается редуктор , понижающий обороты. Редукторы бывают разных конструкций, но функции у них одинаковы.

Анимация, показывающая принцип работы ТВД.

Как и все в этом мире 🙂 турбовинтовой двигатель имеет преимущества и недостатки. Это следствие того, что он соединил в себе качества поршневого и ТРД. Он, как газотурбинный двигатель ( родственник реактивного :-)) является представителем того самого семейства двигателей, которому в свое время сдал свои позиции поршневой движок (об этом здесь). Поэтому ТВД значительно легче поршневого при той же мощности. Это очень хорошо, ведь масса – важнейший показатель для авиации. Все тяжелое, как известно, летает без особой охоты :-).

Одновременно по сравнению с турбореактивным двигателем, турбовинтовой значительно экономичнее. Дело в том, что от поршневого ТВД взял себе воздушный винт. Этот агрегат, особенно в современных разработках имеет довольно высокий коэффициент полезного действия, до 86%, что и обуславливает экономичность всего двигателя.

Однако винту недоступны большие скорости. «Эффект запирания» не дает возможности винтовым самолетам летать со скоростями выше 750 км/ч (единственный самолет наш бомбардировщик ТУ-95 достигает скорости 920 км/ч). Кроме того современные воздушные винты достаточно шумны, что не одобряют нормы Международной организации гражданской авиации ( ICAO ).
Вот и получается, что турбовинтовой двигатель применяется в основном там, где не нужны большие скорости или же важна экономичность. Чаще всего – это ближне- и среднемагистральная гражданская авиация, а также транспортная авиация. Но, честно говоря, и оттуда ТВД частенько вытесняется современными экономичными двухконтурными турбореактивными двигателями .

Турбовинтовой двигатель АИ-20.

Турбовинтовой двигатель уже достаточно послужил людям и всегда отличался высокой экономичностью и большой надежностью. Хорошо известен, например, двигатель-ветеран АИ-20 (и его модификации, начало выпуска 1957 год)) . Он устанавливался на заслуженный пассажирский самолет ИЛ-18 , а также на транспортные самолеты тип АН-8 , АН-12 , АН-32 , на морские БЕ-12 и военно-морские ИЛ-38 . Этот двигатель в некоторых местах эксплуатируется до сих пор и отличается очень высокой надежностью. Такого ресурса, как у АИ-20 (40 000 часов летной эксплуатации!) нет наверное ни у одного двигателя.

Читайте также:  Расход двигатели для мотоблоков

Противолодочный самолет БЕ-12 с двигателями АИ-20.

Пассажирский ветеран ИЛ-18 с двигателями АИ-20.

И, конечно, списывать со счетов турбовинтовой двигатель еще рано. Конструкторы, соблазненные его высокой экономичностью постоянно ведут работу по улучшению существующих образцов и созданию новых. Разрабатываются новые типы винтов, в частности сверхзвуковых ( с переменным, правда, успехом :-)).

Турбовинтовентиляторный двигатель Д-27.

Примером служит сравнительно недавно появившийся двигатель Д-27 , разработанный в Запорожском машиностроительном конструкторском бюро „Прогресс“ имени академика А. Г. Ивченко. В том самом, где создавался когда-то АИ-20. Д-27 внешне очень похож на турбовинтовой двигатель, но на самом деле это качественный скачок вперед. Он даже название имеет измененное: турбовинтовентиляторный двигатель . Предназначен для пассажирских и транспортных самолетов, для которых скорость также важна, как и экономичность. Таких, например, как новый транспортник АН-70 . На оси свободной турбины Д-27 (понятно через редуктор :-)) установлено два винто-вентилятора , вращающихся в разные стороны. Этот двигатель не имеет аналогов и на данный момент является единственным рабочим двигателем такого типа в мире.

Транспортный самолет АН-70 с двигателями Д-27.

Прогресс не остановить :-), так что нам вполне вероятно еще предстоит увидеть новые типы самолетов с «нимбами» винтов и мягким гулом турбовинтовых двигателей.

В заключении предлагаю вам посмотреть два ролика. Первый хорошо показывает принцип работы ТВД. Пояснительные надписи на английском, но, я думаю, понять не сложно. Для тех, кто «совсем не англичанин» :-), поясню, что Gearbox — это редуктор, а Nozzle -это сопло, Inlet — это вход, Combustion Chamber — камера сгорания. Второй ролик — это анимация работы еще одного прогрессивного и очень интересного турбовинтового двигателя Pratt Whitney PT6A . Обратите внимание, что направление движения газов по тракту двигателя организовано «задом наперед» 🙂

Источник

Принцип работы турбовентиляторного двигателя

Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.

При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.

Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.

Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.

Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.

Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.

Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.

Читайте также:  Bosch rotak 32 обороты двигателя

Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.

Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.

Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.

Источник

Как устроен турбовинтовой двигатель? Отвечает авиатехник

Турбовинтовые двигатели считаются более экономичными для самолетов, которые осуществляют длительный полет на небольших скоростях. Такие двигатели сочетают в себе преимущества винтомоторной силовой установки и турбореактивного двигателя.

Турбовинтовым двигателем называется газотурбинный авиационный двигатель, избыток мощности турбины которого применяется для вращения воздушного винта, при этом используется понижающий частоту вращения редуктор.

Турбовинтовой двигатель по своей конструкции схож с турбореактивным. Он имеет такие же узлы и агрегаты, за исключением наличия у первого — воздушного винта и редуктора.

Турбина может достигать своей максимальной мощности при 20000 оборотов в минуту, однако скорость вращения винта специально понижается через редуктор, чтобы добиться нормального КПД. Наибольшее значение КПД винта достигается при 750-1500 об/мин.

Иногда на турбовинтовых двигателях имеется два винта, вращающихся противоположно друг другу. Также, история знает случаи, когда для компрессора и винта использовались отдельные турбины.

До 90% тяги на ТВД создается благодаря работе воздушного винта, и лишь небольшой процент от тяги связан с реакцией газовой струи.

Обычно в турбовинтовых двигателях применяются многоступенчатые турбины (от двух до шести), что влияет на габариты и вес устанавливаемого редуктора.

Весь рабочий процесс внутри ТВД схож с работой ТРД. Воздух попадает через входное устройство в компрессор, подвергается сжатию, затем направляется в камеру сгорания, где и образуется ТВС. Далее, в процессе горения горючей смеси, образуются газы с высокой потенциальной энергией, которые вращают турбину, воздействуя на её лопатки. Далее происходит вращение компрессора и воздушного винта через понижающий редуктор. Разница лишь в том, что в ТРД поток полностью выходит через сопло, образуя реактивную тягу, а на ТВД за тягу отвечает воздушный винт.

Источник

Турбовинтовой двигатель принцип работы

Двигатель турбовинтовой: устройство, схема, принцип работы

Двигатель турбовинтовой принадлежит к классу газотурбинных, которые разрабатывались как универсальные преобразователи энергии и стали широко использоваться в авиации. Они состоят из тепловой машины, где расширенные газы вращают турбину и образуют крутящий момент, а к ее валу прикрепляют другие агрегаты. Двигатель турбовинтовой снабжается воздушным винтом.

Он представляет собой нечто среднее между поршневыми и турбореактивными агрегатами.

Сначала в самолеты устанавливали поршневые двигатели, состоящие из цилиндров в форме звезды с расположенным внутри валом. Но из-за того, что они имели слишком большие габариты и вес, а также низкую возможность скорости, их перестали использовать, отдав предпочтение появившимся турбореактивным установкам. Но и эти двигатели не были лишены недостатков. Они могли развивать сверхзвуковую скорость, но потребляли очень много топлива. Поэтому их эксплуатация обходилась слишком дорого для пассажирских перевозок.

Двигатель турбовинтовой должен был справиться с подобным недостатком. И эта задача была решена. Конструкция и принцип работы были взяты из механизма турбореактивного мотора, а от поршневого — воздушные винты. Таким образом, стало возможным совмещение небольших габаритов, экономичности и высокого коэффициента полезного действия.

Читайте также:  Подогрев двигателя вебасто как оно работает

Устройство турбовинтового двигателя и принцип его работы

  • редуктор;
  • воздушный винт;
  • камера сгорания;
  • компрессор;
  • сопло.

Схема турбовинтового двигателя выглядит следующим образом: после нагнетания и сжатия компрессором воздух попадает в камеру сгорания. Туда же впрыскивается топливо. Полученная смесь воспламеняется и создает газы, которые при расширении поступают в турбину и вращают ее, а она, в свою очередь, вращает компрессор и винт. Нерастраченная энергия выходит через сопло, создавая реактивную тягу. Так как величина ее не является существенной (всего десять процентов), не считается турбореактивным турбовинтовой двигатель.

Рабочий вал

Бывают двигатели с одним или двумя валами. В одновальном варианте на одном валу находятся и компрессор, и турбина, и винт. В двухвальном — на одном из них установлены турбина и компрессор, а на другом — винт через редуктор. Здесь же имеются две турбины, связанные друг с другом газодинамическим способом. Одна из них предназначена для винта, а другая — для компрессора. Такой вариант наиболее распространен, так как энергия может применяться без запуска винтов. А это особенно удобно, когда самолет находится на земле.

Компрессор

Эта деталь состоит из двух-шести ступеней, позволяющих воспринимать существенные перепады температуры и давления, а также снижать обороты. Благодаря такой конструкции получается понизить вес и габариты, что является очень важным для авиационных двигателей. В компрессор входят рабочие колеса и направляющий аппарат. На последнем может быть предусмотрена или не предусмотрена регуляция.

Воздушный винт

Благодаря этой детали образуется тяга, но скорость является ограниченной. Лучшим показателем считается уровень от 750 до 1500 оборотов в минуту, так как при увеличении коэффициент полезного действия начнет падать, и винт вместо разгона будет превращаться в тормоз. Явление называется «эффектом запирания». Оно вызвано лопастями винта, которые на высоких оборотах при вращении, превышающей скорость звука, начинают функционировать некорректно. Тот же самый эффект будет наблюдаться при увеличении их диаметра.

Турбина

Турбина способна развить скорость до двадцати тысяч оборотов в минуту, но винт не сможет ей соответствовать, поэтому здесь имеется понижающий редуктор, сокращающий скорость и увеличивающий крутящий момент.

Редукторы могут быть разными, но главная их задача вне зависимости от вида — снижать скорость и повышать момент.

Именно эта характеристика ограничивает использование турбовинтового двигателя в военных самолетах.

Преимущества и недостатки

  • малый вес по сравнению с поршневыми агрегатами;
  • экономичность по сравнению с турбореактивными моторами (благодаря воздушному винту коэффициент полезного действия достигает восьмидесяти шести процентов).

— скоростной предел — 750км/ч, что мало для современной авиации;

— высокий шум, превышающий допустимые значения Международной организации гражданской авиации.

Сфера использования

Турбовинтовые двигатели используются в тех случаях, когда скорости полета самолета относительно невелики. На большом количестве современных транспортных самолетов применяются именно ТВД. Их преимущество прежде всего в экономичности.

Для турбовинтовых двигателей сила тяги состоит из тяги воздушного винта и силы тяги, возникающей при истечении газа из сопла. В зависимости от скорости полета самолета изменяются доли двух составляющих тяги.

При малых скоростях (крейсерских для транспортных самолетов) доля тяги от воздушных винтов значительно превышает вторую составляющую.

В ТВД часто используется комбинация компрессоров.

Реактивную тягу также создает струя раскаленных газов, выходящая из сопла двигателя.

Отношение объемов воздуха, прокачиваемых через внешний контур и через камеру сгорания, называется «степенью двухконтурности».

Двигатели, у которых степень двухконтурности высока и составляет от 2 до 10, называют турбовентиляторными, а имеющее сравнительно большой диаметр первое колесо компрессора низкого давления — вентилятором.

Преимущества турбовентиляторного двигателя от турбореактивного таковы: во‑первых, если большая часть реактивной тяги создается продуваемым воздухом, а не реактивными газами, повышается топливная эффективность, а значит, экономичность и экологичность всей силовой установки. Во‑вторых, на выходе из сопла (или сопл) холодный воздух смешивается с горячими газами, снижая общее давление смеси. Это делает двигатель менее шумным.

Туробореактивные двигатели ставят на самолеты с требованием значительной скорости и соответственно мощности.

Конструкция двухконтурных турбореактивных двигателей обеспечивает поступление воздуха в значительных количествах, что на высоких скоростях обеспечивает большую тягу. Второй контур, контур низкого давления, таким образом, дает дополнительную силу тяги. Соотношение двух составляющих общей тяги зависит от конструкции двигателей и режимов работы.

Источник

Оцените статью