Турбовальные двигатели и их характеристики

Турбовальный двигатель.

Привет!

Центробежная ступень компрессора ТВаД.

Сегодня продолжаем серию рассказов о типах авиационных двигателей.

Как известно, основной узел любого газотурбинного двигателя ( ГТД) – это турбокомпрессор. В нем компрессор работает в связке с турбиной , которая его вращает. Функции турбины этим могут и ограничиться. Тогда вся оставшаяся полезная энергия газового потока, проходящего через двигатель, срабатывается в выходном устройстве ( реактивном сопле ). Как говорил мой преподаватель «спускается на ветер» :-). Тем самым создается реактивная тяга и ГТД становится обычным турбореактивным двигателем (ТРД).

Но можно сделать и по-другому. Турбину ведь можно заставить кроме компрессора вращать и другие нужные агрегаты, используя ту самую оставшуюся полезную энергию. Это может быть, например, самолетный воздушный винт. В этом случае ГТД становится уже турбовинтовым двигателем, в котором 10-15% энергии все же расходуется «на воздух» :-), то есть создает реактивную тягу.

Принцип работы турбовального двигателя.

Но если вся полезная энергия в двигателе срабатывается на валу и через него передается для привода агрегатов, то мы уже имеем так называемый турбовальный двигатель ( ТваД ).

Такой двигатель чаще всего имеет свободную турбину . То есть вся турбина как бы поделена на две части, между собой механически несвязанные. Связь между ними только газодинамическая . Газовый поток, вращая первую турбину, отдает часть своей мощности для вращения компрессора и далее, вращая вторую, тем самым через вал этой (второй) турбины приводит в действие полезные агрегаты. Сопла на таком двигателе нет. То есть выходное устройство для отработанных газов конечно имеется, но соплом оно не является и тяги не создает. Просто труба… Зачастую еще и искривленная :-).

Компоновка двигателя Arriel 1E2.

Турбовальный двигатель ARRIEL 1E2.

Eurocopter BK 117 c 2-мя турбовальными двигателями Arriel 1E2.

Выходной вал ТваД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.

Компоновка двигателя Arrius 2B2.

Турбовальный двигатель ARRIUS 2B2.

Eurocopter EC 135 с 2-мя турбовальными двигателями Arrius 2B2.

Надо сказать, что редуктор – непременная принадлежность турбовального двигателя. Ведь скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.

Компоновка двигателя Makila 1A1.

Турбовальный двигатель MAKILA 1A1

Eurocopter AS 332 Super Puma с 2-мя турбовальными двигателями Makila 1A1

Компрессор у ТваД может быть осевым (если двигатель мощный) либо центробежным. Часто компрессор бывает и смешанным по конструкции, то есть в нем есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД. Примером разнообразия конструкций ТваД могут служить двигатели известной французской двигателестроительной фирмы TURBOMEKA . Здесь я представляю ряд иллюстраций на эту тему (их сегодня вообще много как-то получилось :-)… Ну много — не мало… :-)).

Читайте также:  Снегоход буран двигатель схема подключения

Компоновка двигателя Arrius 2K1

Турбовальный двигатель ARRIUS 2K1.

Вертолет Agusta A-109S с 2-мя турбовальными двигателями Arrius 2K1.

Основное свое применение турбовальный двигатель находит сегодня конечно же в авиации, по большей части на вертолетах. Его часто и называют вертолетный ГТД. Полезная нагрузка в этом случае – несущий винт вертолета. Известным примером ( кроме французов :-))могут служить широко распространенные до сих пор отличные классические вертолеты МИ-8 и МИ-24 с двигателями ТВ2-117 и ТВ3-117 .

Вертолет МИ-8Т с 2-мя турбовальными двигателями ТВ2-117.

Турбовальный двигатель ТВ2-117.

Вертолет МИ-24 с 2-мя турбовальными двигателями ТВ3-117.

Турбовальный двигатель ТВ3-117 для вертолета МИ-24.

Кроме того ТваД может применяться в качестве вспомогательной силовой установки ( ВСУ , о ней подробнее в следующей статье :-)), а также в виде специальных устройств для запуска двигателей. Такие устройства представляют собой миниатюрный турбовальный двигатель, свободная турбина которого раскручивает ротор основного двигателя при его запуске. Называется такое устройство турбостартер . В качестве примера могу привести турбостартер ТС-21 , используемый на двигателе АЛ-21Ф-3 , который устанавливается на самолеты СУ-24 , в частности на мой родной СУ-24МР :-)…

Двигатель АЛ-21Ф-3 с турбостартером ТС-21.

Турбостартер ТС-21, снятый с двигателя.

Фронтовой бомбардировщик СУ-24М с 2-мя двигателями АЛ-21Ф-3.

Однако, говоря о турбовальных двигателях, нельзя не сказать о совсем неавиационном направлении их использования. Дело в том, что ведь изначально газотурбинный двигатель не был монополией авиации. Главный его рабочий орган, газовая турбина , создавался задолго до появления самолетов. И предназначался ГТД для целей более прозаических, нежели полеты в воздушной стихии :-). Эта самая воздушная стихия его все же завоевала. Однако неавиационное приземленное предназначение существует и серьезности своей не потеряло, скорее наоборот.

На земле, так же как и в воздухе ГТД (турбовальный двигатель) применяется на транспорте.

Первое – это перекачка природного газа по крупным магистралям через газоперекачивающие станции. ГТД используются здесь в качестве мощных насосов.

Второе – это водный транспорт. Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходы . Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создается при помощи ГТД.

Газотурбоход «Циклон-М» с 2-мя газотурбинными двигателями ДО37.

Пасажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно « Циклон-М » появилось в очень неудобное для себя время в 1986 году. Успешно пройдя все испытания, оно «благополучно» перестало существовать для России. Перестройка… Более таких судов не строили. Зато у военных в этом плане дела обстоят несколько лучше. Чего стоит один только десантный корабль «Зубр» , самое большое в мире судно на воздушной подушке.

Десантный корабль на воздушной подушке «Зубр» с газотурбинными двигателями.

Третье – это железнодорожный транспорт. Локомотивы на которых стоят турбовальные газотурбинные двигатели, называют газотурбовозы . На них используется так называемая электрическая передача. ГТД вращает электрогенератор, а вырабатываемый им ток, в свою очередь, вращает электродвигатели, приводящие локомотив в движение. В 60-е годы прошлого века в СССР проходили довольно успешную опытную эксплуатацию три газотурбовоза. Два пассажирских и один грузовой. Однако они не выдержали соревновавния с электровозами и в начале 70-х проект был свернут. Но в 2007 году по инициативе ОАО «РЖД» был изготовлен опытный образец газотурбовоза с ГТД, работающем на сжиженном природном газе (опять криогенное топливо :-)). Газотурбовоз успешно прошел испытания, планируется его дальнейшая эксплуатация.

Читайте также:  Шум при запуске двигателя на холодную акцент

И наконец четвертое , самое, наверное, экзотическое… Танки . Грозные боевые машины. На сегодняшний момент достаточно широко известны два типа ныне использующихся боевых танков с газотурбинными двигателями. Это американский М1 Abrams и российский Т-80 .

Танк M1A1 Abrams с газотурбинным двигателем AGT-1500.

Во всех вышеописанных случаях применения ГТД (суть турбовальный двигатель), он обычно заменяет дизельный двигатель. Это происходит потому, что (как я уже описывал здесь) при одинаковых размерах турбовальный двигатель значительно превосходит дизельный по мощности, имеет гораздо меньший вес и шумность.

Танк Т-80 с газотурбинным двигателем ГТД-1000Т.

Однако у него есть и крупный недостаток.Он обладает сравнительно низким коэффициентом полезного действия, что обуславливает большой расход топлива. Это естественно снижает запас хода любого транспортного средства (и танка в том числе :-)). Кроме того он чувствителен к грязи и посторонним предметам, всасываемым вместе с воздухом. Они могут повредить лопатки компрессора. Поэтому приходится создавать достаточно объемные системы очистки при использовании такого двигателя.

Эти недостатки достаточно серьезны. Именно поэтому турбовальный двигатель получил гораздо большее распространение в авиации, чем в наземном транспорте. Там этот трудяга-движок, ничего не пуская «на ветер» :-), заставляет подниматься в воздух вертолеты. И они в родной для них стихии из несуразных, на первый взгляд, машин превращаются в изумительные по красоте и возможностям творения рук человеческих… Все-таки авиация – это здорово :-)…

P.S. Вы только посмотрите, что они вытворяют!

Источник

ОБЛАСТИ ПРИМЕНЕНИЯ И ОСНОВНЫЕ ПАРАМЕТРЫ ТУРБОВАЛЬНЫХ ДВИГАТЕЛЕЙ

Турбовальными в общем случае называются такие газотурбинные двигатели, у которых вся развиваемая мощность через выходной вал передается потребителю. Основная область применения турбовальных двигателей в авиации – силовые установки вертолетов. Помимо этого в авиации турбовальные двигатели применяются в качестве вспомогательных газотурбинных двигателей (ВГТД), где они являются источником мощности для запуска основных двигателей, привода генераторов электрического тока, а также для снабжения ЛА сжатым воздухом. К этому же типу двигателей относятся турбостартеры. Помимо авиации в настоящее время турбовальные двигатели находят все более широкое применение в наземном и водном транспорте.

Рис.41.4

На вертолетах используются преимущественно турбовальные двигатели, состоящие из одно- или двухвального газогенератора и свободной (силовой) турбины (рис.41.4, а и в).

Преимущество турбовальных двигателей со свободной турбиной состоит в том, что вал свободной турбины механически не связан с газогенератором. Это позволяет поддерживать постоянство частоты вращения вала свободной турбины nс.т = const при различных загрузках несущего винта независимо от частот вращения валов газогенератора, что при изменении этой загрузки позволяет не тратить время на раскрутку несущего винта, а также облегчает запуск двигателя.

Читайте также:  Повысилось давление в двигателе 405

Для передачи крутящего момента с вала двигателя к несущему и рулевому винтам вертолета применяется трансмиссия с редуктором. Преимущество схемы со свободной турбиной и здесь проявляется в том, что редуктор в этом случае имеет меньшее передаточное отношение, так как частота вращения nс.т делается меньшей, чем роторов газогенератора. Это дает экономию в размерах и массе редуктора, но приводит к снижению окружных скоростей ступеней свободной турбины, а следовательно, к увеличению их числа (и соответственно к утяжелению двигателя).

Основными параметрами турбовальных двигателей являются: мощность на валу свободной турбины в стендовых условиях, которая у большинства современных ТВаД составляет ≈ 1000…2000 кВт, удельный расход топлива ≈ 0,27…0,30 кг/(кВт ч) и удельная масса 0,15…0,2 кг/кВт.

Температура газа перед турбиной ГГ в современных ТВаД равна обычно 1500 … 1600 К при (при САУ) порядка 14 … 17. Соответственно удельная мощность составляет 220…280 кВт∙с/кг, что при ≈ 1000…2000 кВт требует расхода воздуха не более ≈ 10 кг/с. (Исключением является двигатель Д-136 мощностью 8380 кВт). В этом случае при использовании осевых компрессоров высота лопаток их последних ступеней получается очень малой, что снижает их КПД из-за сильного влияния перетекания воздуха в радиальных зазорах и наличия относительно более толстого пристеночного пограничного слоя.

Поэтому во многих вертолётных ГТД применяются компрессоры комбинированной схемы, состоящие из нескольких осевых и одной центробежной или диагональной ступени.

Практически не всех вертолетных ГТД устанавливаются пылезащитные устройства (ПЗУ) инерционного типа. Схема установки такого ПЗУ на двигателе показана на рис.41.5. Воздух из окружающей атмосферы засасывается двигателем через искривленный канал l-образной формы 1, в котором частицы пыли, подхватываемые потоком воздуха, разгоняются и по инерции проскакивают в пылеулавливающий канал 4, в котором для усиления потока воздуха устанавливается эжектор 5, работающий на сжатом воздухе, отбираемом от компрессора 3 по шлангу 6.

Рис.41.5

Необходимо учитывать влияние ПЗУ на данные и характеристики двигателя. Это влияние заключается в снижении sвх и отборе воздуха для работы эжектора (только при взлете и посадке). Отбор воздуха может составлять 2…3%, а снижение sвх – 1,5…2,0%.

Особенность рабочего процесса турбовальных вертолётных двигателей, как мы уже говорили, состоит в том, что, вследствие малых скоростей полета вертолетов, скорость истечения из сопла у них желательно иметь как можно меньшей. По этой причине за свободной турбиной устанавливается не сопло, а диффузорный выходной патрубок (затурбинный диффузор). Его назначение — максимально снизить скорость истечения газовой струи на выходе из двигателя и за счет этого увеличить степени понижения давления на свободной турбине pс.т и повысить работу Lс.т.

Термодинамический цикл турбовального ГТД в p,v- координатах представлен на рис.41.6. Вследствие малых скоростей полета вертолета (или при V = 0 в стационарных ГТУ) у них обычно рв 3 45

Дата добавления: 2018-05-10 ; просмотров: 762 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Adblock
detector