Турбонаддув дизельных двигателей схема устройства

ТУРБОНАДДУВ (ТУРБИНА) ДВИГАТЕЛЯ: ВИДЫ, КОНСТРУКЦИЯ, ПРИНЦИП РАБОТЫ, ПЛЮСЫ И МИНУСЫ

Добрый день, сегодня мы узнаем, что такое турбонаддув (турбина) двигателя внутреннего сгорания, каков принцип работы, конструкция, а также, какими плюсами и минусами обладают системы наддува мотора. Кроме того, в статье мы выясним, какие существуют виды систем наддува двигателя и, чем они отличаются. В заключении мы наглядно рассмотрим типовую схему функционирования турбонаддува силового агрегата.

Как мы знаем, мощность двигателя зависит от количества воздуха и смешанного с ним топлива, которое может быть доставлено в мотор. Если мы хотим увеличить мощность двигателя, необходимо увеличить как количество подаваемого воздуха, так и топлива. Подача большего количества топлива не имеет никакого эффекта до тех пор, пока не будет необходимого для его сгорания количество воздуха, иначе образуется избыток не сгоревшего топлива, что приводит к перегреву двигателя и повышенной непрозрачности или дымности от отработанных выхлопных газов, причем также, как это происходит при масложоре.

1. ОСОБЕННОСТИ И КОМПОНЕНТЫ ТУРБОНАДДУВА ДВИГАТЕЛЯ

Увеличение мощности двигателя может быть достигнуто путем увеличения либо его рабочего объема, либо частоты вращения коленчатого вала. Увеличение смещения увеличивает вес, размеры двигателя и, в конечном счете, его стоимость. Увеличение частоты вращения коленчатого вала проблематично из-за возникших технических проблем, особенно для двигателей с большим объемом.

Технически приемлемым решением проблемы увеличения мощности является использование нагнетателя (компрессора). Это означает, что поступающий в двигатель воздух сжимается перед входом в камеру сгорания. Другими словами, компрессор обеспечивает подачу необходимого количества воздуха, достаточного для полного сгорания увеличенной дозы топлива. Следовательно, при предыдущем рабочем объеме и той же частоте вращения коленчатого вала мы получаем больше мощности.

Существует две основные системы наддува: с механическим приводом, которая отражена ниже на изображении “A” и просто “турбо”, отражена на рисунке “B” (использующие энергию отработавших газов). Кроме того, существуют также комбинированные системы, например, турбо компаундная, отображена на рисунке “в”. Ниже на фото наглядно продемонстрированы вышеописанные системы наддува двигателя.

В случае компрессора с механическим приводом необходимое давление воздуха получают благодаря механической связи между коленчатым валом двигателя и компрессором. Давление воздуха турбокомпрессора достигается за счет вращения потока выхлопных газов турбины. Турбокомпрессор состоит из двух турбин впрыска и привод, соединенный с валом. Вал установлен на двух подшипниках, которые постоянно подается масло, оказывающие охлаждающее и смазочную поддержку.

Обе турбины вращаются в одном направлении и с одинаковой скоростью. Выходящие из цилиндров двигателя отработавшие газы имеют высокую температуру и давление. Они ускоряются до высокой скорости (около 10 000 оборотов в минуту) и соприкасаются с лопастным приводным колесом, и преобразуют свою кинетическую энергию в механическую вращательную энергию (крутящий момент). С такой же скоростью и давлением вращается колесо турбины, которое подает сжатый воздух в двигатель. Разрядное колесо сконструировано таким образом, что уже при небольшом расходе выхлопных газов достигается достаточное давление нагнетаемого воздуха. При полной нагрузке двигатель достигает максимального избыточного давления (от 1,1 до 1,6 атмосфер); при этом обороты двигателя составляют около 2000 оборотов в минуту и остаются постоянными при дальнейшем наборе частоты вращения до максимальной.

Между двигателем и турбокомпрессором имеется соединение только через поток выхлопных газов. Частота вращения турбины напрямую не зависит от скорости вращения коленчатого вала двигателя и характеризуется некоторой инерцией, то есть увеличением подачи топлива, увеличением энергии выхлопного потока, а затем увеличением частоты вращения турбины и напором разряда, а мотор, следовательно, получает больше воздуха в цилиндры, что позволяет увеличить подачу топлива. Ниже на фото продемонстрирована схема типового турбокомпрессора и его основных элементов.

Основные компоненты турбокомпрессора: 1 – трубопровод для подачи сжатого воздуха от турбины к диафрагме; 2 – нагнетательное колесо турбины; 3 – корпус нагнетательного колеса; 4 – промежуточный корпус; 5 – сбрасывающий клапан; 6 – диафрагма; 7 – пружина; 8 – диафрагменная камера; 9 – приводное колесо; 10 – корпус турбонагнетателя; 11, 12 – опоры; А – подача воздуха от воздушного фильтра; B – подача воздуха к впускным клапаном; C – обводной канал сбрасывающего клапана для ограничения давления нагнетания; D – подача отработавших газов от двигателя; E – подача отработавших газов к выпускной системе; H – подача смазки; J – отвод смазки; K – подача сжатого воздуха для открытия сбрасывающего клапана.

2. ПРИНЦИП РАБОТЫ, ПЛЮСЫ И МИНУСЫ СИСТЕМ ТУРБОНАДДУВА

Для предотвращения нарастания давления более, чем необходимо на высоких оборотах двигателя, в компрессоре находится специальное устройство, состоящее из разгрузочного клапана и диафрагмы с пружиной, которое обеспечивает контроль давления и оборотов мотора. Полость перед мембраной связана с давлением поступающего воздуха через трубопровод. С увеличением давления, которое происходит с нарастанием частоты вращения коленчатого вала, диафрагма сгибается, сжимая пружину опуская и открывая клапан. Выхлопные газы таким образом проходят через дополнительный обводной канал с тем, чтобы снизить скорость вращения приводного колеса турбины, а значит и разгрузочного колеса. Повышение давления становится постоянным.

Для двигателей, работающих в широком диапазоне скоростей (например, в легковом автомобиле), высокое давление наддува желательно даже на низких оборотах. Поэтому будущее принадлежит турбокомпрессорам с регулируемым давлением. Небольшой диаметр современных турбин и специальные сечения газовых каналов способствуют уменьшению инерционности, то есть турбина очень быстро разгоняется, и давление воздуха очень быстро достигает требуемого показателя.

Читайте также:  Как промыть двигатель от шлаков

Для удовлетворения все возрастающих требований, которые необходимы для автомобильной техники в областях потребления топлива, выбросов выхлопных газов и шума, сегодня проектируются и разрабатываются электронные системы контроля за наддувом.

На первом этапе, исходя из определенного количества параметров, таких как температура охлаждающей жидкости, масла, впускной воздух и выхлопные газы происходит анализ состояния двигателя. Кроме того, измеряются обороты двигателя, положение педали акселератора и другие параметры. Все эти данные анализируются компьютером и используются для определения оптимума в условиях давления наддува на мотор.

На втором этапе значение давления передается исполнительным устройствам, контролирующим этот показатель во впускной системе. При определении этого давления также учитываются критические условия работы двигателя, в частности, детонация. Акустические датчики позволяют определить даже самовозгорание в системах мотора. Давление наддува в этом случае уменьшается. Эта операция повторяется до тех пор, пока детонация не исчезнет. Когда детонация остановится, давление наддува снова возрастет до исходного значения. Компьютер также определяет идеальное давление наддува в случае повторяющейся детонации, возникающей, например, из-за использования некачественного топлива.

Электромагнитный клапан получает электрический сигнал, который определяет время его открытия, и работает, соответственно, как специальный регулятор турбины. Таким образом, мембрана действует не на все давление наддува, а только на ее небольшую часть. Данный момент зависит от положения электромагнитного клапана.

При нажатии на педаль акселератора компьютер выдает команду закрыть клапан и все выхлопные газы заходят в турбину, вызывая повышение давления наддува и мотор развивает значительную мощность, что делает возможным быстро ускориться автомобилю. После достижения желаемой скорости сбрасывающий клапан открывается, и давление наддува становится стандартным. Ниже на фото продемонстрирована принципиальная схема электронного управления турбонаддувом.

Вариантом системы наддува для двигателей легковых автомобилей является волновой нагнетатель воздуха, также известный, как Comprex. Двигатель, управляемый через зубчатый ремень, делится на секции, ротор вращается в цилиндрическом корпусе с торцами прорезных окон для прохождения свежего воздуха и выхода выхлопных газов. Система окон и полостей выполнена особым образом, что позволяет волнам давления выхлопного потока преобразовать под давлением поток свежего воздуха. Ниже на изображении наглядно отображен волновой нагнетатель системы турбонаддува.

Основные элементы волнового нагнетателя системы наддува двигателя: 1 – поток свежего воздуха под высоким давлением; 2 – зубчатый ремень; 3 – поток свежего воздуха под низким давлением; 4 – поршень двигателя; 5 – поток отработавших газов под высоким давлением; 6 – поток отработавших газов под низким давлением; 7 – ротор; 8 – щелевые окна.

Существенным достоинством волнового нагнетателя является непосредственный газодинамический энергообмен между отработавшими газами и свежим воздухом без участия каких-либо промежуточных механизмов. Такой энергообмен происходит со звуковой и сверхзвуковой скоростью. Волновой обменник, как и механический нагнетатель, автоматически реагирует на изменения нагрузки изменением давления наддува. При постоянном передаточном отношении между двигателем и волновым нагнетателем, энергооб­мен оптимален только для одного рабочего режима.

Для устранения вышеописанного недостатка, на торцах корпуса имеется ряд воздушных «карманов» разной формы и размера, благодаря которым диапазон оптимальной работы нагнетателя расширяется. Кроме того, это позволяет достичь благоприят­ного протекания кривой крутящего момента, чего невозможно добиться при помощи других методов наддува.

Нагнетатель волнового типа по сравнению с другими устройствами наддува требует много места для ременной передачи и систем трубопроводов. Это усложняет возможность его установки в подкапотном пространстве автомобиля. Однако для дизельных двигателей используется турбонаддув с изменяемой геометрией турбины, который позволяет ограничить поток выхлопных газов через турбину при высокой частоте вращения коленчатого вала двигателя. Ниже на изображение наглядно продемонстрирован принцип работы волнового турбонаддува.

Основные фазы и компоненты участвующие в работе волнового наддува двигателя: а – положение направляющих лопаток при высокой скорости потока отработавших газов; б – положение направляющих лопаток при низкой скорости потока отработавших газов; 1 – крыльчатка турбины; 2 – управляющее кольцо; 3 – подвижные направляющие лопатки соплового аппарата; 4 – управляющий рычаг; 5 – управляющий пневматический цилиндр; 6 – поток отработавших газов.

Подвижные направляющие лопатки соплового типа изменяют сечение каналов, через которые отработанные газы устремляются на крыльчатку турбины. Они соприкасаются в турбине и происходит выброс газа под давлением с желаемым повышающим коэффициентом. При низкой нагрузке двигателя подвижные лопасти открывают небольшое поперечное сечение каналов, так что повышается давление выхлопа назад. Поток газов в турбине развивается на высокой скорости, обеспечивая высокую скорость вала нагнетателя. Поток выхлопных газов действует на более удаленную от оси вала область лопаток крыльчатки турбины.

Таким образом, имеется большая моментная нагрузка на рукоятку, которая увеличивает крутящий момент. При высокой нагрузке направляющие лопатки открывают большее поперечное сечение каналов, что снижает скорость течения потока выхлопных газов. В результате этого турбо нагнетатель при равном количестве выхлопных газов меньше ускоряется и работает с меньшей частотой при большем количестве газов. Этот метод ограничивает давление наддува. Поворачивая кольцо управления, он изменяет угол наклона лопастей, которое устанавливаются под определенным углом либо непосредственно отдельным рычагом управления, установленным на лопастях, или при помощи поворотных камер.

В свою очередь поворотное кольцо осуществляет управление пневматическим цилиндром под действием вакуума или давления воздуха и в качестве альтернативы, с помощью положения обратной связи двигателя лопастей (датчика положения) их открывает. Открытый нагнетатель с изменением геометрии находится в определенном положении и поэтому безопасен, то есть в случае отказа управления ни он, ни двигатель не повреждаются. Однако могут возникать потери, но только от производительности и при низких частотах вращения коленчатого вала.

Читайте также:  Поло седан стуки в двигателе 2014 год выпуска

В заключении отметим, что турбонаддув — это определенный тип наддува, при помощи которого воздух в рабочую область цилиндров нагнетается под сильным давлением за счет использования энергии отработанных газов. Турбонаддув используется на бензиновых и дизельных двигателях. Наиболее эффективен в сочетании с дизельным мотором вследствие высокой степени сжатия газов в двигателе и довольно невысокой частоты вращения вала коленчатого типа. Однако сдерживающими факторами использования и применения систем наддува двигателей на бензиновых моторах являются моменты, связанные с наступлениями детонаций, которые возникают в связи с резким повышением частоты вращения двс. Кроме того, при работе на высоких температурах с отработанными газами может происходить сильный перегрев системы наддува мотора, что в свою очередь приводит к выходу из строя самой турбины автомобиля.

Источник

Принцип работы турбины на дизеле

Принцип работы турбины на дизельном двигателе

Мотор, на который установлен турбонаддув, называется турбодизелем.

Устройство турбины дизельного двигателя

Турбокомпрессор выполняет задачу по нагнетанию воздуха под давлением в цилиндры мотора: чем больше будет воздуха, тем больше топлива силовой агрегат сможет сжечь, что, в свою очередь, приведет к увеличению мощности двигателя без увеличения объема имеющихся цилиндров.

Турбонаддув имеет особую конструкцию из двух элементов:

  • турбина;
  • компрессор.

Компрессор усиливает поступление воздуха в топливную систему. Составные части компрессора находятся в алюминиевом корпусе. Внутри находится ротор, закрепленный на оси турбины. Вращаясь, ротор вбирает воздух: большая скорость вращения приводит к большему количеству попавшего внутрь воздуха. Для набора скорости существует турбина.

Турбина состоит из корпуса с ротором внутри. Поскольку все элементы устройства взаимодействуют с газами высокой температуры, они изготавливаются из специальных материалов, невосприимчивых к такому воздействию.

Как работает турбина на дизельном двигателе

Ротор и ось, на которой он закреплен, вращаются в разных направлениях. Частота вращения довольно велика, поэтому элементы плотно прижимаются друг к другу.

Принцип работы турбины на дизельном двигателе следующий:

  • компрессор обеспечивает поступление воздуха из окружающей среды, который смешивается с дизельным топливом и затем направляется в цилиндры;
  • топливно-воздушная смесь загорается, начинают двигаться поршни. По ходу этого процесса образуются газы, поступающие в выпускной коллектор;
  • скорость движения газов, оказавшихся в корпусе, значительно возрастает. Вступая во взаимодействие с ротором, они приводят его во вращающееся положение;
  • вращение передается компрессорному ротору (за это отвечает вал), который снова втягивает новую порцию воздуха.

Таким образом, принцип работы основывается на взаимосвязи: чем сильнее вращается ротор, тем больше поступает воздуха, но при этом ротор увеличивает скорость вращения, если количество воздуха возрастает.

Как работает турбонаддув

Чтобы разобраться в работе турбонаддува, для начала следует уяснить понятия турбоподхвата и турбоямы.

Турбоподхват – ситуация, когда набравший скорость ротор увеличивает поступление воздуха в цилиндры, следствием чего становится повышение мощности двигателя.

Турбояма – момент небольшой задержки, наблюдаемый в работе турбины при увеличении количества поступившего горючего, что достигается нажатием на педаль газа. Задержка вызвана временем, которое нужно ротору для его разгона газами.

Турбонаддув увеличивает давление отработанных газов за счет более интенсивной работы двигателя. В то же самое время повышается и давление наддува: этот процесс требует контроля и регулировки, поскольку при достижении высоких значений велика вероятность поломки. Функции регулировки давления возложены на клапан, контролем предельно возможных значений занимаются мембрана и пружина с определенными значениями жесткости (когда достигается максимально допустимая величина, мембрана открывает клапан).

Работа турбины дизельного двигателя также требует контроля давления:

  1. компрессор через клапан, дабы снизить давление, сбрасывает лишний забранный воздух;
  2. когда давление поступившего воздуха достигает максимально допустимой величины, клапан выпускает газы, и ротор вращается с требуемой скоростью, а компрессор всегда забирает только нужное количество воздуха.

Минусы использования турбокомпрессора

У устройства есть определенные недостатки:

  1. возрастает расход топлива, что особенно ощущается при неправильной регулировке системы;
  2. температура в процессе сжатия повышается, что может привести к детонации. Чтобы избежать такой неприятности, необходим монтаж регуляторов, охладителей и ряда других элементов.

Турбированный мотор: правила эксплуатации

Чтобы дизельная турбина работала с максимальным КПД и как можно дольше не выходила из строя, нужно придерживаться определенных правил в процессе эксплуатации автомобиля:

  • придерживаться графика замены масла, что позволит не допустить засорения маслопровода абразивами;
  • использовать качественное моторное масло, соответствующее по характеристикам в паспорте двигателя;
  • не трогаться сразу после включения мотора – движок должен быть прогрет;
  • сразу после прекращения движения не выключать двигатель, дав ему хотя бы 10 секунд поработать на холостых оборотах.

Как работает турбина: видео

Что такое турбо-яма?

Крыльчатка турбокомпрессора способна развивать до двухсот тысяч оборотов в минуту, благодаря чему данное устройство отличается большой инерционностью или, говоря иначе, имеет «турбо-яму», которая проявляется при резком нажатии на педаль газа. В этот момент крыльчатка медленно приводится в движение, и приходится некоторое время ждать, чтобы автомобиль начал набирать скорость.

Этот эффект имеет продолжительность всего несколько секунд, но, тем не менее, он не доставляет особого удовольствия при разгоне машины. На сегодняшний день производители смогли устранить эффект «турбо-ямы» путем установки двух перепускных клапанов. Один предназначен для выработанных газов, задача второго состоит в том, чтобы перепускать избыток воздуха в трубопровод турбокомпрессора из впускного коллектора.

Благодаря этой системе обороты крыльчатки при сбросе газа уменьшаются в замедленном темпе, в то время как при резком нажатии на педаль акселератора происходит поступление воздушной массы в двигатель в полном объеме.

Функция турбины, настройка

Функция турбокомпрессора заключается в том, чтобы увеличивать выходную мощность и крутящий момент двигателя. Благодаря турбине производители могут уменьшать количество рабочих цилиндров в двигателе без снижения мощности и крутящего момента.

Читайте также:  Метки грм 406 двигатель схема

Также все чаще стали выпускаться дизельные двигатели с двумя турбинами (Bi-Turbo), что позволяет производителям не только добиваться потрясающий мощности от дизельных автомобилей, но снижать уровень вредных веществ в выхлопе до рекордных значений.

Недавно также стали появляться турбины, которые могут работать, как от электричества, так и традиционно от газа, поступающего из выхлопной системы. Благодаря этому инженеры добились максимальной мощности и крутящего момента при небольших оборотах двигателя.

Использование двух турбокомпрессоров и других турбо деталей

На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.

Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.

Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.

Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотным и содержит больше молекул, чем теплый воздух. Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.

При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива — либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.

Схема турбины с изменяемой геометрией (VNT)

Она также известна под названием – трубина с переменным соплом. Данный тип турбины используется в дизельных двигателях. Девять подвижных лопастей, установленных в турбокомпрессоре, регулируют прохождение потока газов к турбине. Увеличение и блокировка потока газов достигается при помощи привода, регулирующего угол наклона девяти лопастей. Скорость потока газов и давление нагнетаемого воздуха согласуются с количеством оборотов двигателя во время изменения угла наклона лопастей.

Некоторые двигатели используют несколько турбокомпрессоров. Возможно использование двух (Твин Турбо), трех или же четырёх. В таких конструкциях они устанавливаются последовательно. Первый используется при низких оборотах, а второй — при высоких. Также существует схема установки компрессоров, при которой они располагаются параллельно друг другу. Она используется на V-образных двигателях. На каждый ряд цилиндров приходится по компрессору. Бытует мнение, что один большой турбокомпрессор менее производителен, чем два маленьких.

Система смазки

Это неотъемлемая составляющая любой турбины. Принцип работы системы смазки простой. Масло подается между подшипником и корпусом компрессора через множество каналов под давлением. Также она охлаждает нагретые детали компрессора. На некоторых двигателях турбина сопряжена с общей системой охлаждения. Благодаря этому достигается лучшее охлаждение.

Типы турбин

  • Раздельный. Он имеет два сопла для каждой пары цилиндров и два входа для отработавших газов. Первое сопло предназначено для быстрого реагирования, второе служит для максимальной производительности. В конструкции есть разделенные выпускные каналы. Сделано это для предотвращения перекрытия каналов при выпуске выхлопных газов.
  • Компрессор с переменным соплом. Также он известен, как турбина с изменяемой геометрией. Применяется на моторах с маркировкой TDI от «Фольксваген». Здесь в конструкции имеется 9 подвижных лопастей. Они могут регулировать поток выхлопных газов, что идут к турбине. Угол наклона лопастей – регулируемый, что позволяет согласовать давление нагнетаемого воздуха и скорость движения газов с оборотами ДВС.

Для большей производительности на автомобиль может быть установлено два компрессора. Такие системы получили маркировку «Твин-турбо».

Устанавливаются данные механизмы последовательно. При этом первая турбина работает на низких оборотах, а вторая на высоких. На V-образных моторах нагнетатели устанавливаются параллельно (на каждый ряд по одной турбине). Как показывает практика, установка двух небольших компрессоров значительно эффективнее, чем применение одного, но большого.

Паровая турбина

Принцип работы ее немного иной. Пар, который образуется в котле, под давлением попадает на крыльчатку турбины. Последняя совершает обороты, тем самым, вырабатывая механическую энергию. Обычно такая турбина соединена с генератором и применяется на электростанциях. Благодаря механической энергии, генератор производит электричество. Мощность таких агрегатов может достигать 1000 МВт.

Однако данный показатель существенно зависит от перепада давления пара на входе и выходе. Также подобные турбины применяются для привода питательного насоса, на кораблях и судах с ядерной установкой. Что касается военных кораблей, здесь применяется газовая турбина. Принцип работы ее заключается в следующем. Газ поступает через сопловой аппарат компрессора в область низкого давления. При этом он расширяется и ускоряется. Затем поток газа двигает лопатки турбины. Последние передают усилия на вал через диски. Таким образом создается полезный крутящий момент.

Источник

Оцените статью