Турбонаддув дизельного двигателя принцип работы

Устройство и принцип работы турбины на дизельном двигателе

Турбокомпрессор — устройство, которое позволяет примерно на 30% увеличить мощность мотора, при этом отсутствует необходимость физически увеличивать объём цилиндров. Такие агрегаты установлены практически на всех современных автомобилях, вне зависимости от типа используемого топлива. Ниже подробнее расскажем об устройстве и работе турбины дизельного двигателя, а также обрисуем минусы этого устройства и самые распространённые поломки.

Устройство и особенности турбины

Агрегат состоит из двух устройств — турбины и компрессора. Задача первой преобразовывать энергию выхлопных газов, а второго — подавать сжатый воздух в цилиндры. «Крыльчатки» — главные составляющие части этой системы, представляют собой два лопастных колеса (компрессорное и турбинное).

По своей сути компрессор — это насос, его единственная задача заключается в подаче сжатых атмосферных воздушных масс в цилиндры. Кислород необходим для сжигания топлива, чем больше его поступит, тем больше силовой агрегат сможет сжечь. В результате это приводит к значительному увеличению мощности движка без физического увеличения объёма или количества цилиндров. Система турбонаддува состоит из следующих компонентов:

  • корпус компрессора;
  • корпус турбины;
  • корпус подшипников;
  • компрессорное колесо;
  • турбинное колесо;
  • ось или вал ротора.

В турбонаддуве основным элементом выступает ротор, который защищается корпусом и крепится к специальной оси. И сам ротор, и корпус турбины изготавливаются из термостойких сплавов — это необходимо из-за того, что они находятся в постоянном контакте с газами высокой температуры.

Ротор и крыльчатка вращаются в разных направлениях с большой скоростью — такое решение обеспечивает их плотный прижим друг к другу. Принцип работы в следующем:

  1. Отработанные газы поступают в выпускной коллектор.
  2. Затем — в специальный канал, расположенный в корпусе нагнетателя, который выполнен в форме улитки.
  3. В «улитке» газы разгоняются до большой скорости и подаются на ротор.

Благодаря такому принципу и обеспечиваются вращение турбины. Что касается оси турбонагнетателя, то она крепится на специальных подшипниках скольжения и смазывается за счёт поступления жидкости из моторного отсека. Утечка смазочной жидкости предотвращается благодаря наличию прокладки и уплотнительным кольцам. Кроме того, дополнительную герметизацию обеспечивают смешанные и отдельные потоки отработанных газов и воздуха. Такое технологическое решение не обеспечивает гарантии в 100%, что выхлоп не попадёт в сжатый воздух, однако система этого и не требует.

Что ещё входит в систему турбонаддува

Турбина — сложный агрегат, инженерам потребовалось несколько десятилетий, чтобы довести систему до ума. Только на первый взгляд решение компенсировать потери КПД за счёт выхлопных газов кажется простой. Даже после создания устройства у него долгое время наблюдались определённые проблемы.

Например, не удавалось решить проблему турбоямы — задержки после нажатия на педаль газа и запуском ротора. Решение нашлось в виде использования двух клапанов. Один из них использовался для вывода излишек воздуха, а второй предназначался для выхлопных газов. Кроме того, современные турбины имеют изменённую геометрию лопаток, что серьёзно их отличает от подобных устройств второй воловины XX столетия.

Можно выделить ещё одну проблему, которая заключалась в излишней детонации — с ней тоже успешно справились современные инженеры. Проблема заключалась в том, что температура в рабочих секторах цилиндров резко увеличивалась во время нагнетания воздуха, особенно в последней стадии такта. Решение нашлось в установке интеркулера (промежуточного охладителя воздуха).

Интеркулер — устройство для охлаждения наддувочного воздуха. Он выполняет сразу две функции — препятствует детонации и не даёт уменьшиться плотности воздуха. В результате удалось сохранить работоспособность всей системы.

Также стоит отметить и другие важные составляющие турбины.

Регулировочный клапан. Отвечает за поддержание заданного уровня давления, излишки давления поступают в приёмную трубу.

Перепускной клапан. Используется для вывода излишних воздушных масс обратно во впускные патрубки — это нужно для снижения мощности при её избытке.

Стравливающий клапан. Если дроссель закрывается и нет датчика массового расхода воздуха, клапан будет возвращать излишки воздуха обратно в атмосферу.

Патрубки. Герметичные отрезки трубы. Одни используются для подачи воздуха, вторые для подачи смазочного масла.

Выпускные коллекторы. Должны быть совместимы с турбокомпрессором.

Принцип работы

Для начала нужно разобраться с двумя терминами.

Турбоподхват — состояние, при котором быстро вращающийся ротор увеличивает подачу воздуха в цилиндры, благодаря чему повышается мощность силового агрегата.

Турбояма — короткая задержка, которая возникает в работе турбины при повышении количества поступившего топлива во время нажатия педали газа. Задержка появляется из-за того, что ротору необходимо некоторое время, пока газы его не разгонят.

Турбонаддув повышает давление выхлопных газов за счёт более интенсивной работы мотора, но в то же время увеличивается и давление наддува. При достижении критических величин может произойти поломка, а потому этот процесс необходимо контролировать. За регулировку давления отвечают клапана, а мембрана и пружина следят за предельно допустимыми значениями. При достижении определённой величины мембрана открывает клапан для стравливания давления.

Работа турбины на дизельном двигателе нуждается в контроле давления, который осуществляется следующими процессами:

  • если поступило слишком много воздуха, компрессор (используя клапан) освобождается от излишков;
  • клапан стравливает давление в случаях, когда воздуха поступило слишком много — при этом агрегат работает стабильно и забирает ровно столько воздуха, сколько требуется.
Читайте также:  Сильная вибрация двигателя на холостом ходу опель астра н

Работа турбокомпрессора на дизельном двигателе

Работа осуществляется по следующие схеме:

  1. Компрессор нагнетает сжатый атмосферный воздух.
  2. Воздушная масса смешивается с топливом и поступает в цилиндры.
  3. Полученная топливно-воздушная смесь воспламеняется, что приводит поршни в движение.
  4. Параллельно с этим процессом появляются отработанные газы, которые направляются в выпускной коллектор.
  5. Скопившиеся в корпусе газы значительно увеличивают скорость.
  6. Вращение переходит (по валу) на компрессорный ротор, он втягивает новую порцию воздуха.

Получается интересное взаимодействие. Ротор вращается быстрее — больше поступает воздуха. Чем больше воздуха поступает — тем быстрее вращается ротор.

Минусы турбины на дизельном двигателе

Как и любое устройство, у турбины есть свои положительные характеристики (которые были описаны выше), так и недостатки. К минусам можно отнести в первую очередь увеличенный расход топлива, особенно это касается неправильно отрегулированных агрегатов. Второй минус — чувствительность к качеству топлива, что особенно актуально в российских условиях. Дело в том, что некачественный дизель может привести к детонации. Отметим и другие недостатки:

  • общее удорожание двигателя;
  • повышенная требовательность к моторному маслу;
  • масло и фильтры приходится менять чаще (примерно каждые 5-6 тыс. км);
  • нужно часто менять воздушный фильтр;
  • ресурс турбины на дизельном двигателе значительно ниже, чем на бензиновом (из-за более высокой температуры выхлопа);
  • средний ресурс агрегата составляет 200-250 тыс. км, после чего потребуется замена или, как минимум, капитальный ремонт;
  • достаточно сложный ремонт, провести его среднестатистическому автовладельцу самому не получится.

Однако стоит отметить, что плюсы всё-таки перевешивают минусы. В противном случае турбины не пользовались бы такой большой популярностью.

Основные неисправности — признаки и причины

Сразу стоит оговориться, что основная причина поломок — это несвоевременное техническое обслуживание агрегата, его рекомендуется проводить минимум один раз в год. Следующая причина — низкое качество масла, либо его несвоевременная замена. Третья — попадание в устройство посторонних предметов (например, мелких камушков). Наконец, четвёртая — банальный износ отдельных компонентов турбины, ведь у каждого оборудования есть свой срок эксплуатации. Теперь опишем признаки, которые могут говорить о неисправности.

Чёрный дым из выхлопной трубы. Топливо сгорает в интеркулере или нагнетающей магистрали. Скорее всего — неисправность системы управления.

Сизый дым. Возможно, из-за нарушения герметизации турбины масло просачивается в камеру сгорания.

Белый дым. Сливной маслопровод загрязнился, потребуется его чистка.

Повышенный расход топлива. Воздух не доходит до компрессора.

Увеличен расход масла. Нужно проверить стыки патрубков — возможно, нарушена герметичность.

Уменьшение динамики разгона. Скорее всего вышла из строя система управления, из-за чего возник недостаток кислорода.

Посторонний свист, скрежет или шумы. Это может быть изменение зазора ротора, дефект в корпусе, утечка воздуха между двигателем и турбиной, либо загрязнение маслопровода.

Всегда нужно соблюдать правила эксплуатации агрегата — это снизит вероятность появления поломки и продлит срок службы устройства. Следует придерживаться нескольких простых правил:

  • следите за качеством топлива и масла;
  • не забывайте вовремя менять масло и фильтры;
  • начинайте движение только после того, как движок прогреется;
  • после прекращения движения нужно дать мотору поработать на холостых, а не сразу его выключать.

И, конечно же, следует регулярно проходить ТО.

Что делать, если турбина сломалась

Если обнаружилась неисправность первое, что нужно сделать — провести диагностику. Причём чем раньше, тем лучше. Если вовремя заменить неисправную деталь, удастся избежать более серьёзных проблем. Например — зачастую автовладелец не обращает внимание на лёгкое постукивание думая, что это не имеет значения, в результате через какое-то время приходится покупать новую турбину, хотя изначально можно было обойтись небольшим ремонтом.

Следует отметить, что недостаточно знать, как работает турбина на дизеле — нужно идеально разбираться во всех её компонентах. Только обладая соответствующими навыками, опытом и оборудованием получится провести качественный ремонт. Именно поэтому рекомендуем не пытаться самостоятельно отремонтировать агрегат (можно сделать только хуже), а обратиться в компанию «Дизель-Мастер». Специализируемся на ремонте турбин с 1998 года, а потому знаем о них всё.

5 причин обратиться именно к нам:

  1. В наличие высокоточное диагностическое оборудование (стенды Bosch и Delphi);
  2. В штате — специалисты с большим практическим опытом подобных работ.
  3. Быстрый ремонт в течение дня без потери в качестве.
  4. Используем только оригинальные комплектующие и ремкомплекты.
  5. Предоставляем официальную гарантию на комплектующие и выполненный ремонт.

При первых признаках дефекта — обратитесь к нам. Установим причину неисправности и предложим эффективный, экономичный способ её решения.

Источник

ТУРБОНАДДУВ (ТУРБИНА) ДВИГАТЕЛЯ: ВИДЫ, КОНСТРУКЦИЯ, ПРИНЦИП РАБОТЫ, ПЛЮСЫ И МИНУСЫ

Добрый день, сегодня мы узнаем, что такое турбонаддув (турбина) двигателя внутреннего сгорания, каков принцип работы, конструкция, а также, какими плюсами и минусами обладают системы наддува мотора. Кроме того, в статье мы выясним, какие существуют виды систем наддува двигателя и, чем они отличаются. В заключении мы наглядно рассмотрим типовую схему функционирования турбонаддува силового агрегата.

Как мы знаем, мощность двигателя зависит от количества воздуха и смешанного с ним топлива, которое может быть доставлено в мотор. Если мы хотим увеличить мощность двигателя, необходимо увеличить как количество подаваемого воздуха, так и топлива. Подача большего количества топлива не имеет никакого эффекта до тех пор, пока не будет необходимого для его сгорания количество воздуха, иначе образуется избыток не сгоревшего топлива, что приводит к перегреву двигателя и повышенной непрозрачности или дымности от отработанных выхлопных газов, причем также, как это происходит при масложоре.

Читайте также:  Как нагрузка может влиять на обороты двигателя

1. ОСОБЕННОСТИ И КОМПОНЕНТЫ ТУРБОНАДДУВА ДВИГАТЕЛЯ

Увеличение мощности двигателя может быть достигнуто путем увеличения либо его рабочего объема, либо частоты вращения коленчатого вала. Увеличение смещения увеличивает вес, размеры двигателя и, в конечном счете, его стоимость. Увеличение частоты вращения коленчатого вала проблематично из-за возникших технических проблем, особенно для двигателей с большим объемом.

Технически приемлемым решением проблемы увеличения мощности является использование нагнетателя (компрессора). Это означает, что поступающий в двигатель воздух сжимается перед входом в камеру сгорания. Другими словами, компрессор обеспечивает подачу необходимого количества воздуха, достаточного для полного сгорания увеличенной дозы топлива. Следовательно, при предыдущем рабочем объеме и той же частоте вращения коленчатого вала мы получаем больше мощности.

Существует две основные системы наддува: с механическим приводом, которая отражена ниже на изображении “A” и просто “турбо”, отражена на рисунке “B” (использующие энергию отработавших газов). Кроме того, существуют также комбинированные системы, например, турбо компаундная, отображена на рисунке “в”. Ниже на фото наглядно продемонстрированы вышеописанные системы наддува двигателя.

В случае компрессора с механическим приводом необходимое давление воздуха получают благодаря механической связи между коленчатым валом двигателя и компрессором. Давление воздуха турбокомпрессора достигается за счет вращения потока выхлопных газов турбины. Турбокомпрессор состоит из двух турбин впрыска и привод, соединенный с валом. Вал установлен на двух подшипниках, которые постоянно подается масло, оказывающие охлаждающее и смазочную поддержку.

Обе турбины вращаются в одном направлении и с одинаковой скоростью. Выходящие из цилиндров двигателя отработавшие газы имеют высокую температуру и давление. Они ускоряются до высокой скорости (около 10 000 оборотов в минуту) и соприкасаются с лопастным приводным колесом, и преобразуют свою кинетическую энергию в механическую вращательную энергию (крутящий момент). С такой же скоростью и давлением вращается колесо турбины, которое подает сжатый воздух в двигатель. Разрядное колесо сконструировано таким образом, что уже при небольшом расходе выхлопных газов достигается достаточное давление нагнетаемого воздуха. При полной нагрузке двигатель достигает максимального избыточного давления (от 1,1 до 1,6 атмосфер); при этом обороты двигателя составляют около 2000 оборотов в минуту и остаются постоянными при дальнейшем наборе частоты вращения до максимальной.

Между двигателем и турбокомпрессором имеется соединение только через поток выхлопных газов. Частота вращения турбины напрямую не зависит от скорости вращения коленчатого вала двигателя и характеризуется некоторой инерцией, то есть увеличением подачи топлива, увеличением энергии выхлопного потока, а затем увеличением частоты вращения турбины и напором разряда, а мотор, следовательно, получает больше воздуха в цилиндры, что позволяет увеличить подачу топлива. Ниже на фото продемонстрирована схема типового турбокомпрессора и его основных элементов.

Основные компоненты турбокомпрессора: 1 – трубопровод для подачи сжатого воздуха от турбины к диафрагме; 2 – нагнетательное колесо турбины; 3 – корпус нагнетательного колеса; 4 – промежуточный корпус; 5 – сбрасывающий клапан; 6 – диафрагма; 7 – пружина; 8 – диафрагменная камера; 9 – приводное колесо; 10 – корпус турбонагнетателя; 11, 12 – опоры; А – подача воздуха от воздушного фильтра; B – подача воздуха к впускным клапаном; C – обводной канал сбрасывающего клапана для ограничения давления нагнетания; D – подача отработавших газов от двигателя; E – подача отработавших газов к выпускной системе; H – подача смазки; J – отвод смазки; K – подача сжатого воздуха для открытия сбрасывающего клапана.

2. ПРИНЦИП РАБОТЫ, ПЛЮСЫ И МИНУСЫ СИСТЕМ ТУРБОНАДДУВА

Для предотвращения нарастания давления более, чем необходимо на высоких оборотах двигателя, в компрессоре находится специальное устройство, состоящее из разгрузочного клапана и диафрагмы с пружиной, которое обеспечивает контроль давления и оборотов мотора. Полость перед мембраной связана с давлением поступающего воздуха через трубопровод. С увеличением давления, которое происходит с нарастанием частоты вращения коленчатого вала, диафрагма сгибается, сжимая пружину опуская и открывая клапан. Выхлопные газы таким образом проходят через дополнительный обводной канал с тем, чтобы снизить скорость вращения приводного колеса турбины, а значит и разгрузочного колеса. Повышение давления становится постоянным.

Для двигателей, работающих в широком диапазоне скоростей (например, в легковом автомобиле), высокое давление наддува желательно даже на низких оборотах. Поэтому будущее принадлежит турбокомпрессорам с регулируемым давлением. Небольшой диаметр современных турбин и специальные сечения газовых каналов способствуют уменьшению инерционности, то есть турбина очень быстро разгоняется, и давление воздуха очень быстро достигает требуемого показателя.

Для удовлетворения все возрастающих требований, которые необходимы для автомобильной техники в областях потребления топлива, выбросов выхлопных газов и шума, сегодня проектируются и разрабатываются электронные системы контроля за наддувом.

На первом этапе, исходя из определенного количества параметров, таких как температура охлаждающей жидкости, масла, впускной воздух и выхлопные газы происходит анализ состояния двигателя. Кроме того, измеряются обороты двигателя, положение педали акселератора и другие параметры. Все эти данные анализируются компьютером и используются для определения оптимума в условиях давления наддува на мотор.

На втором этапе значение давления передается исполнительным устройствам, контролирующим этот показатель во впускной системе. При определении этого давления также учитываются критические условия работы двигателя, в частности, детонация. Акустические датчики позволяют определить даже самовозгорание в системах мотора. Давление наддува в этом случае уменьшается. Эта операция повторяется до тех пор, пока детонация не исчезнет. Когда детонация остановится, давление наддува снова возрастет до исходного значения. Компьютер также определяет идеальное давление наддува в случае повторяющейся детонации, возникающей, например, из-за использования некачественного топлива.

Читайте также:  Как доработать двигатель логана

Электромагнитный клапан получает электрический сигнал, который определяет время его открытия, и работает, соответственно, как специальный регулятор турбины. Таким образом, мембрана действует не на все давление наддува, а только на ее небольшую часть. Данный момент зависит от положения электромагнитного клапана.

При нажатии на педаль акселератора компьютер выдает команду закрыть клапан и все выхлопные газы заходят в турбину, вызывая повышение давления наддува и мотор развивает значительную мощность, что делает возможным быстро ускориться автомобилю. После достижения желаемой скорости сбрасывающий клапан открывается, и давление наддува становится стандартным. Ниже на фото продемонстрирована принципиальная схема электронного управления турбонаддувом.

Вариантом системы наддува для двигателей легковых автомобилей является волновой нагнетатель воздуха, также известный, как Comprex. Двигатель, управляемый через зубчатый ремень, делится на секции, ротор вращается в цилиндрическом корпусе с торцами прорезных окон для прохождения свежего воздуха и выхода выхлопных газов. Система окон и полостей выполнена особым образом, что позволяет волнам давления выхлопного потока преобразовать под давлением поток свежего воздуха. Ниже на изображении наглядно отображен волновой нагнетатель системы турбонаддува.

Основные элементы волнового нагнетателя системы наддува двигателя: 1 – поток свежего воздуха под высоким давлением; 2 – зубчатый ремень; 3 – поток свежего воздуха под низким давлением; 4 – поршень двигателя; 5 – поток отработавших газов под высоким давлением; 6 – поток отработавших газов под низким давлением; 7 – ротор; 8 – щелевые окна.

Существенным достоинством волнового нагнетателя является непосредственный газодинамический энергообмен между отработавшими газами и свежим воздухом без участия каких-либо промежуточных механизмов. Такой энергообмен происходит со звуковой и сверхзвуковой скоростью. Волновой обменник, как и механический нагнетатель, автоматически реагирует на изменения нагрузки изменением давления наддува. При постоянном передаточном отношении между двигателем и волновым нагнетателем, энергооб­мен оптимален только для одного рабочего режима.

Для устранения вышеописанного недостатка, на торцах корпуса имеется ряд воздушных «карманов» разной формы и размера, благодаря которым диапазон оптимальной работы нагнетателя расширяется. Кроме того, это позволяет достичь благоприят­ного протекания кривой крутящего момента, чего невозможно добиться при помощи других методов наддува.

Нагнетатель волнового типа по сравнению с другими устройствами наддува требует много места для ременной передачи и систем трубопроводов. Это усложняет возможность его установки в подкапотном пространстве автомобиля. Однако для дизельных двигателей используется турбонаддув с изменяемой геометрией турбины, который позволяет ограничить поток выхлопных газов через турбину при высокой частоте вращения коленчатого вала двигателя. Ниже на изображение наглядно продемонстрирован принцип работы волнового турбонаддува.

Основные фазы и компоненты участвующие в работе волнового наддува двигателя: а – положение направляющих лопаток при высокой скорости потока отработавших газов; б – положение направляющих лопаток при низкой скорости потока отработавших газов; 1 – крыльчатка турбины; 2 – управляющее кольцо; 3 – подвижные направляющие лопатки соплового аппарата; 4 – управляющий рычаг; 5 – управляющий пневматический цилиндр; 6 – поток отработавших газов.

Подвижные направляющие лопатки соплового типа изменяют сечение каналов, через которые отработанные газы устремляются на крыльчатку турбины. Они соприкасаются в турбине и происходит выброс газа под давлением с желаемым повышающим коэффициентом. При низкой нагрузке двигателя подвижные лопасти открывают небольшое поперечное сечение каналов, так что повышается давление выхлопа назад. Поток газов в турбине развивается на высокой скорости, обеспечивая высокую скорость вала нагнетателя. Поток выхлопных газов действует на более удаленную от оси вала область лопаток крыльчатки турбины.

Таким образом, имеется большая моментная нагрузка на рукоятку, которая увеличивает крутящий момент. При высокой нагрузке направляющие лопатки открывают большее поперечное сечение каналов, что снижает скорость течения потока выхлопных газов. В результате этого турбо нагнетатель при равном количестве выхлопных газов меньше ускоряется и работает с меньшей частотой при большем количестве газов. Этот метод ограничивает давление наддува. Поворачивая кольцо управления, он изменяет угол наклона лопастей, которое устанавливаются под определенным углом либо непосредственно отдельным рычагом управления, установленным на лопастях, или при помощи поворотных камер.

В свою очередь поворотное кольцо осуществляет управление пневматическим цилиндром под действием вакуума или давления воздуха и в качестве альтернативы, с помощью положения обратной связи двигателя лопастей (датчика положения) их открывает. Открытый нагнетатель с изменением геометрии находится в определенном положении и поэтому безопасен, то есть в случае отказа управления ни он, ни двигатель не повреждаются. Однако могут возникать потери, но только от производительности и при низких частотах вращения коленчатого вала.

В заключении отметим, что турбонаддув — это определенный тип наддува, при помощи которого воздух в рабочую область цилиндров нагнетается под сильным давлением за счет использования энергии отработанных газов. Турбонаддув используется на бензиновых и дизельных двигателях. Наиболее эффективен в сочетании с дизельным мотором вследствие высокой степени сжатия газов в двигателе и довольно невысокой частоты вращения вала коленчатого типа. Однако сдерживающими факторами использования и применения систем наддува двигателей на бензиновых моторах являются моменты, связанные с наступлениями детонаций, которые возникают в связи с резким повышением частоты вращения двс. Кроме того, при работе на высоких температурах с отработанными газами может происходить сильный перегрев системы наддува мотора, что в свою очередь приводит к выходу из строя самой турбины автомобиля.

Источник