Что такое рабочий цикл двигателя
Процессы, протекающие в цилиндрах двигателя при его работе, повторяются циклично. Одним таким рабочим циклом считается совокупность тактов (впуск топливовоздушной смеси, сжатие, воспламенение и расширение газов, а также выпуск продуктов сгорания), обеспечивающая переход тепловой энергии, выделяемой при воспламенении одной порции смеси, непосредственно в работу. О том, что представляют собой рабочие циклы поршневых двигателей внутреннего сгорания, пойдет речь далее.
Что такое мертвые точки и такты ДВС
Количество этапов, входящих в один рабочий цикл ДВС (двигателя внутреннего сгорания), принято считать исходя из числа ходов поршня в цилиндре. Такие этапы получили название такты двигателя. Непосредственно ход поршня определяется его перемещением из одной крайней точки в другую. Они получили наименование мертвые, поскольку если в такой точке произойдет остановка поршня, он не сможет начать движение без внешнего воздействия. Простыми словами мертвые точки – это позиции, при которых движение в текущем направлении поршня прекращается и он начинает обратный ход.
Мертвые точки и ход поршня ДВС
Существуют две мертвые точки:
- Нижняя (НМТ) – положение, при котором расстояние между поршнем и осью вращения коленвала минимально.
- Верхняя (ВМТ) – положение, при котором цилиндр находится на максимальном удалении от оси вращения коленвала двигателя.
В англоязычной документации ВМТ обозначается как TDC (Top Dead Centre), А НМТ – BDC (Bottom Dead Centre).
Существуют двигатели, рабочий цикл которых может состоять из двух, а также из четырех тактов. Исходя из этого их разделяют на двухтактные и четырехтактные моторы.
Как работает четырехтактный двигатель
Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:
- цилиндр;
- поршень – выполняет возвратно-поступательные движения внутри цилиндра;
- клапан впуска – управляет процессом подачи топливовоздушной смеси в камеру сгорания;
- клапан выпуска – управляет процессом выброса отработавших газов из цилиндра;
- свеча зажигания – осуществляет воспламенение образовавшейся топливовоздушной смеси;
- коленчатый вал;
- распределительный вал – управляет открытием и закрытием клапанов;
- ременной или цепной привод;
- кривошипно-шатунный механизм – переводит движение поршня во вращение коленчатого вала.
Рабочий цикл четырехтактного двигателя
Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:
- Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
- Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
- Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
- Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.
В ходе каждого такта коленчатый вал двигателя совершает поворот на 180°. За полный рабочий цикл коленвал поворачивается на 720°.
Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.
Особенности работы двухтактных моторов
Основой того, чем отличается двухтактный двигатель от четырехтактного, можно назвать тот факт, что в первом за один рабочий цикл коленвал совершает два оборота, а во втором весь рабочий цикл укладывается в один оборот коленвала (360°). Поршень при этом совершает лишь два хода. Процессы, происходящие в камере сгорания в течение рабочего цикла у двухтактного мотора, не отличаются от четырехтактных, но впуск горючей смеси и выпуск отработавших газов выполняются одновременно с тактами сжатия и расширения.
Процесс одновременного удаления отработавших газов и нагнетания в цилиндр свежего заряда, происходящий в двухтактном двигателе, получил название продувка.
Принцип работы простейшего двухтактного двигателя заключается в следующем:
- Такт сжатия. В начале цикла поршень находится в НМТ и движется в положение ВМТ такта сжатия. При этом происходит перекрытие окна продувки (впуска), а затем канала выпуска. В момент, когда поршень закрывает окно выпуска, начинается сжатие горючей смеси, и в пространстве под поршнем возникает разрежение. Это обеспечивает нагнетание топлива в камеру через приоткрытый клапан впуска.
- Такт расширения (рабочего хода). Когда поршень приближается к ВМТ, происходит срабатывание свечи зажигания, и горючая смесь воспламеняется. Это провоцирует резкое повышение давления и температуры, в результате чего поршень начинает движение вниз. Таким образом, газы совершают полезную работу, а поршень при движении к НМТ увеличивает компрессию топливовоздушной смеси. С ростом давления клапан начинает закрываться и препятствует попаданию горючей смеси во впускной коллектор. При достижении поршнем выпускного окна, происходит открытие последнего, и отработавшие газы удаляются в систему выхлопа. Давление в камере снижается, а дальнейшее движение поршня открывает канал продувки и топливовоздушная смесь подается в камеру, вытесняя отработавшие газы.
В зависимости от того, как реализована система продувки в устройстве двухтактного двигателя, их разделяют на разные типы:
- С контурной кривошипно-камерной продувкой. Горючая смесь подается в камеру цилиндра напрямую из картера двигателя. При этом она всасывается в момент движения поршня к ВМТ, а при движении поршня к НМТ обеспечивается продувка за счет избыточного давления.
- С клапанно-щелевой продувкой. Применяется для одноцилиндровых двигателей. Газораспределение реализуется путем перекрытия окон, выполненных в стенке цилиндра.
- С прямоточной продувкой. В такой конструкции впуск выполняется через специальные продувочные окна, выполненные по окружности цилиндра в его нижней части. В свою очередь, выпуск реализуется через выхлопной клапан.
- С использованием продувочных насосов. Применяется на многоцилиндровых двухтактных двигателях. При этом воздух для продувки сжимается специальным компрессором.
В отличие от четырехтактного, двухтактный двигатель не имеет системы газораспределения. Не требуют такие конструкции и организации сложной системы смазки. С другой стороны, четырехтактные моторы более экономичны по расходу топлива, а также меньше подвержены вибрации и обеспечивают более чистый выхлоп.
Циклы двигателей внутреннего сгорания
Двигатель внутреннего сгорания (ДВС) – это тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу . В ДВС процесс горения топлива происходит внутри рабочего цилиндра.
По роду применяемого топлива ДВС подразделяются на двигатели жидкого топлива и газовые.
По способу заполнения цилиндра свежим зарядом двигатели подразделяются на четырехтактные и двухтактные. В двухтактном ДВС рабочий процесс осуществляется за два хода поршня и один оборот коленвала, в четырехтактном ДВС рабочий цикл совершается за четыре хода поршня и за два оборота коленвала.
По способу приготовления рабочей смеси из топлива и воздуха ДВС подразделяют на двигатели с внутренним смесеобразованием – дизельные двигатели, где топливо воспламеняется при впрыскивании его в сжатый воздух, нагретый до высоких температур; и внешним – карбюраторные, где зажигание рабочей смеси производится электрической искрой.
Первый практически пригодный газовый ДВС был сконструирован французским механиком Ленуаром в 1860 г.. В 1876г. немецкий изобретатель Отто построил более совершенный четырехтактный газовый двигатель, в 1880 г. инженер Костович в России построил бензиновый карбюраторный двигатель, а в 1897 г. немецкий инженер Дизель создал двухтактный ДВС с воспламенением от сжатого воздуха – дизельный двигатель.
Рис. 1.14 Схема работы 4 – х тактного карбюраторного двигателя.
На рисунке 1.14 показана схема работы четырехтактного карбюраторного двигателя внутреннего сгорания.
В цилиндре 1 расположен поршень 2, шатун 3 соединен с одной стороны с поршнем, а с другой с коленчатым валом. В верхней части цилиндра расположены впускной 4 и выпускной 5 клапаны. крайние положения поршня называются верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ), расстояние между ВМТ и НМТ называется ходом поршня.
Двигатель работает следующим образом. При первом такте всасывании- поршень движется вниз и засасывает горючую смесь в цилиндр за счет создаваемого разряжения. при этом всасывающий клапан открыт, выпускной закрыт.
Второй такт- сжатие происходит при движении поршня вверх от НМТ. При этом оба клапана закрыты. При приближении к ВМТ горючая смесь зажигается от электрической искры.
Третий такт-рабочий ход осуществляется за счет давления газа. Действием давления поршень движется вниз от ВМТ до НМТ, создавая крутящий момент на коленчатом валу.
Четвертый этап – выпуск, при котором через открытый выпускной кран при движении поршня вытесняются из цилиндра продукты сгорания.
Таким образом, из четырех тактов только при третьем такте совершается полезная работа; во всех остальных происходит затрата работы.
Рабочий процесс в двухтактном двигателе осуществляется следующим образом. После сгорания топлива начинается процесс расширения газа. В конце расширения поршень открывает выпускные окна, через которые удаляется часть отработанных газов. Далее, продолжая двигаться вниз, поршень открывает продувочные окна, при этом цилиндр продувается сжатым воздухом. В начале второго такта- сжатия продолжается процесс удаления отработанных газов и заполнения цилиндра свежим зарядом. После того, как поршень закроет окна, начинается сжатие горючей смеси. Типы двигателей:
1)с подводом тепла при постоянном объеме (идеальный цикл Отто) ;
2)с подводом тепла при постоянном давлении ( цикл Дизеля);
3)цикл со смешанным подводом тепла – частично при v=const и p=const (идеальный цикл Тринклера).
Рассмотрим принцип действия различных ДВС с использованием теоретической диаграммы идеального двигателя. При этом в рассматриваемом термодинамическом процессе вводится ряд допущений:
1) рабочее тело – идеальный газ;
2) рабочее тело не покидает цилиндр;
3) свойства рабочего тела не меняются.
На рисунке 1.15 представлена теоретическая диаграмма четырехтактного двигателя с циклом подвода тепла при v=const. Этот способ подвода тепла имеет место в карбюраторном двигателе с использованием легкого топлива – бензин, газ, спирт и т.п.
Рис. 1.15 –цикл Отто
а-1 – всасывание рабочей смеси;
1-2 – адиабатное сжатие рабочего тела;
2-3 – изохорный подвод тепла (сгорание топлива);
3-4 – адиабатное расширение рабочего тела (рабочий ход);
4-1 – изохорный отвод тепла;
При ходе поршня вниз (1 такт) в цилиндр двигателя 1 засасывается через впускной клапан 4 готовая рабочая смесь. Это смесь горючих газов или паров жидкого топлива с воздухом. В теоретической диаграмме предполагается, что всасывание происходит при постоянном давлении, равном атмосферному (линия а-1).
В точке 1 всасывающий клапан закрывается, после чего, при ходе поршня вверх (2 такт) рабочая смесь сжимается адиабатно, с повышением давления. Давление зависит от степени сжатия
(1.96)
Где v1 – полный объем цилиндра; v2 – объем цилиндра в конце сжатия (линия 1-2).
В конце сжатия(т. 2) смесь зажигается с помощью электрической искры. Сгорание смеси происходит мгновенно. При рассмотрении термодинамического цикла процесс горения заменяют условно обратимым подводом тепла к рабочему телу от горячего источника в изохорном процессе (2-3).
В результате выделения теплоты при сгорании (условный подвод тепла) давление увеличивается до p3 . далее поршень вновь перемещается вниз (3 такт) в результате адиабатного расширения газа (линия 3-4). Это рабочий ход поршня. В нем совершается положительная работа расширения за счет внутренней энергии газа.
В конце расширения открывается выхлопной клапан. При этом давление мгновенно падает до атмосферного. Принимается, что падение давления происходит при постоянном объеме (v=const) (линия 4-1). В действительности же при падении давления часть газов выпускается в атмосферу. При рассмотрении идеального термодинамического цикла процесс падения давления заменяется эквивалентным изохорным процессом 4-1 с обратимым отводом теплоты q2 к холодному источнику.
Четвертый такт происходит при открытом выпускном клапане. В этом случае продукты сгорания выталкиваются в атмосферу при атмосферном давлении p=const. Линия выталкивания 1-а.
Площадь индикаторной диаграммы (1234) характеризует полезную работу газа за первый цикл.
Термический КПД цикла с подводом тепла при v=const определяют из общего выражения:
, (1.97)
где – отводимое количество тепла по изохоре 4-1;
где – подводимое количество тепла по изохоре 2-3.
Отсюда при сv = const:
(1.98)
Между температурами для адиабат 4-3 и 1-2 следующие зависимости:
(1.99)
;
(1.100)
Как мы уже говорили, – степень сжатия.
(1.101)
Таким образом получаем:
(1.102)
Из полученного выражения видим, что КПД цикла с подводом тепла при v=const тем больше, чем больше степень сжатия . Для реальных ДВС
.
Рис 1.16- цикл Дизеля
По линии а-1 в цилиндр засасывается воздух при p1=1атм., по линии 1-2 воздух сжимается, Т2 – температура самовоспламенения топлива, p2=3 4 МПа. В конце сжатия (т.2) в камеру впрыскивается распыленное жидкое топливо, которое воспламеняется и горит при p=const – этому процессу соответствует подвод тепла q1 (линия 2-3 теоретической диаграммы).
Благодаря сжатию воздуха, а не горючей смеси, достигается более высокая степень сжатия =18
20. В точке 3 начинается расширение газа – рабочий ход ДВС. В точке 4 открывается выпускной клапан. Мгновенное падение давления происходит при V=const c отводом тепла q2 (линия 4-1).
,
Где – степень предварительного расширения:
Из соотношения параметров для адиабатного процесса:
;
(1.103)
Из полученного выражения следует, что цикла с подводом тепла при p=const увеличивается с увеличением
, K и уменьшается с возрастанием
. При более высоких значениях степени сжатия увеличивается максимальное давление в цилиндре, что вызывает конструктивные затруднения. Среднее значение КПД цикла Дизеля