Трехфазный двигатель в однофазной сети регулятор оборотов

Содержание
  1. Изменение оборотов асинхронного двигателя. Разбор способов регулирования.
  2. Регулирование частотой
  3. Регулирование оборотов изменением числа пар полюсов
  4. Асинхронные двигатели с фазным ротором
  5. Регулирование с помощью напряжения
  6. Установка активного сопротивления в цепи ротора
  7. Моторы с двойным питанием через вентильные устройства
  8. Эпилог
  9. Трехфазный двигатель в однофазной сети: схемы запуска
  10. Принцип работы двигателя в трехфазной схеме
  11. Технология создания крутящего момента от однофазной сети
  12. Конденсаторные схемы запуска
  13. Схема запуска для звезды
  14. Схема запуска для треугольника
  15. Схемы без конденсаторного запуска
  16. Трехфазный двигатель в однофазную сеть: 7 доступных способов
  17. KOMITART — развлекательно-познавательный портал
  18. Разделы сайта
  19. DirectAdvert NEWS
  20. GNEZDO NEWS
  21. Друзья сайта
  22. Статистика
  23. Как подключить трехфазный электродвигатель к сети 220 В. Регулятор оборотов.

Изменение оборотов асинхронного двигателя. Разбор способов регулирования.

Благодаря своей простоте исполнения, относительной дешевизне и надежности трехфазные двигатели широко используются в хозяйстве и производстве. Во многих исполнительных механизмах применяют всевозможные типы асинхронных двигателей . Для широкого спектра применения АД, необходимо изменять и регулировать скорость вращения вала двигателя. Регулировка скорости АД производят несколькими способами. Их мы сейчас и рассмотрим.

  1. Механические регулирование. Путем изменения передаточного числа в редукторах.
  2. Электрическое регулирование. Изменением нескольких параметров питающего напряжения.

Рассмотрим электрическое изменение скорости АД, как более точный и распространённый способ регулирования.

Управление электрическими параметрами позволяет производить плавный запуск двигателя, поддерживать заданные параметры скорости или момента асинхронного мотора.

Параметры с помощью которых управляют мотором:

  • Частотой тока питающей сети.
  • Величиной тока в цепях мотора.
  • Напряжением на двигателе.

Самым распространённым асинхронным двигателем является мотор беличье колесо, двигатель с короткозамкнутым ротором. Для управления вращением, в этом типе электрических машин, применяют несколько видов воздействия.

  • Изменение частоты поля статора.
  • Управление величиной скольжения, изменяя напряжение питания.

Регулирование частотой

Специальные устройства, преобразователи частоты (другие названия инвертор, частотник, драйвер), подключаются к электрической машине. Путем выпрямления напряжения питания, преобразователь частоты внутри себя формирует необходимые величины частоты и напряжения, и подает их на электрический двигатель.

Необходимые параметры для управления АД преобразователь рассчитывает самостоятельно, согласно внутренним алгоритмам, запрограммированным производителем устройства.

Преимущества регулирование частотой .

  • Достигается плавное регулирование частоты вращения электромотора.
  • Изменение скорости и направление вращения двигателя.
  • Автоматическое поддержание требуемых параметров.
  • Экономичность системы управления.

Единственный недостаток, с которым можно смирится, это необходимость в приобретении частотника. Цены на такие устройства совсем незаоблачные, и в пределах 150 уе, можно обзавестись преобразователем для 2 кВт двигателя.

Регулирование оборотов изменением числа пар полюсов

Специальные многоскоростные двигатели со сложной обмоткой регулируются путем изменения количества активных полюсов на статоре. Обмотки полюсов разбиты на группы, и чередуются, путем коммутации обмотки подключаются, то параллельно, то последовательно.

Положительные моменты данного способа.

  • Высокий КПД мотора.
  • Жесткие механические выходные параметры.

К недостаткам такого управления, можно отнести высокую стоимость электрической машин, а также значительный вес и габариты такого двигателя. Изменение оборотов происходит ступенькой 1500-3000 об/мин.

Асинхронные двигатели с фазным ротором

Основной способ управления АД с фазным ротором — изменение величины скольжения между статором и ротором.

Регулирование с помощью напряжения

Через специальные автотрансформаторы ЛАТР, путем изменения напряжения на обмотках двигателя, производят регулировку оборотов вала.

Данный способ так же подходит и к АД с короткозамкнутым ротором. Таким способ можно регулировать в пределах от минимума до номинальных параметров двигателя.

Установка активного сопротивления в цепи ротора

Переменное реостатное сопротивление или набор сопротивлений в цепи ротора воздействует на ток и поле ротора. Изменяя таким образом величину скольжения и количество оборотов двигателя.

Чем больше сопротивление, тем меньше ток, тем больше величина скольжения АД и меньше скорость.

Достоинства такого регулирования.

  1. Большой диапазон регулирования оборотами электрической машины.
  2. Мягкая выходная характеристика мотора.

Недостатки такого способа.

  1. Уменьшение КПД двигателя.
  2. Ухудшение рабочих характеристик механизма.

Моторы с двойным питанием через вентильные устройства

Регулировка мощности и оборотов в АД с фазным ротором происходит путем изменения величины скольжения. Управление крупными, специальными машинами происходит путем подачи и регулировкой величины ЭДС, на ротор от отдельного источника напряжения.

Эпилог

При всех своих достоинствах асинхронные машины имеют существенный недостаток, это рывок ротора при подаче напряжения. Такие режимы опасны как для самого двигателя, так и для приводных механизмов. Поскольку во время пуска АД, ток в обмотках двигателя приравнивается к короткому замыканию. А рывок вала разбивает подшипники, шлицы, передаточные устройства. Поэтому пуск АД стараются производить плавным стартом. А именно:

  • Запуск через ЛАТР.
  • Разгон и работа АД, через переключение обмоток двигателя звезда-треугольник.
  • Использование устройств управления, таких как частотный преобразователь.
Источник

Трехфазный двигатель в однофазной сети: схемы запуска

Конструирование станков своими руками связано с необходимостью преобразования доступной электрической энергии в кинетическую, обеспечивающую вращение различных механизмов.

С этой целью хорошо справляется трехфазный двигатель в однофазной сети. Он доступен по цене, часто достается умельцам практически бесплатно от списанного промышленного оборудования.

Предлагаю ознакомиться с кратким обзором типовых схем его запуска. Выбрать наиболее подходящую.

Принцип работы двигателя в трехфазной схеме

Конструкция статора изготовлена из магнитопровода, в котором запрессованы три электрические изолированные обмотки. Они выполнены одинаковым проводом, имеют равное количество витков, но разнесены в пространстве на 120 угловых градусов.

Читайте также:  Как проверить компрессию в двухтактном двигателе

На каждую обмотку подается отдельная фаза напряжения сети. Их чередование определяет направление вращения ротора. Он движется под действием сложения сил магнитных полей, создаваемых протекающими токами.

Векторные диаграммы помогают представить более наглядно этот процесс.

Каждая обмотка является отдельной электрической цепью, но суммарно они образуют разветвленную схему подключения. В промышленном исполнении их собирают:

· звездой с общей нейтралью;

С их описанием удобно ознакомиться здесь .

Подача трехфазного напряжения на схему звезды или треугольника обеспечивает наиболее эффективное преобразование электрической энергии в мощность крутящего момента на валу двигателя. Его величину характеризуют коэффициентом полезного действия.

Технология создания крутящего момента от однофазной сети

В этой ситуации мы имеем всего одно напряжение. Из него надо сделать три разных тока, сдвинутых в идеале под 120 градусов, что не просто.

Для этого используют реактивное сопротивления, зная, что у емкости ток опережает фазу напряжения, а на индуктивности он отстает на 90 градусов. Недобор отклонения угла составляет 25%, который уже влияет на потери энергии.

Трехфазный двигатель в однофазной сети работает неэффективно: потери мощности могут превышать до 50%, а у отдельных схем и выше.

Однако часто этот недостаток не является критичным. Он устраивает большинство пользователей.

Конденсаторные схемы запуска

Сразу оговорюсь, что в электротехнике существует довольно большое количество их разработок. Рассматриваю только наиболее популярные. Для них необходимо подобрать конденсаторы по емкости и рабочему напряжению.

Поскольку амплитуда синусоиды постоянно изменяет свой знак, то безопасно эксплуатировать можно только конденсаторы, изоляция которых рассчитана на 500 вольт или больше.

Схема запуска для звезды

Потенциалы фазы и нуля прикладывают к началам двух обмоток, а третью подключают через конденсаторы. Разделяют их на две цепочки: рабочую, смонтированную постоянно и пусковую, задействуемую через выключатель.

Иногда цепь запуска используется для преодоления мощных нагрузок. Но длительно работать так нельзя: обмотка двигателя перегревается, изоляция может сгореть.

Схема запуска для треугольника

Принцип подачи напряжения через цепочки конденсаторов и выключатель остался прежним. Особенность только в том, что потенциалы подводятся на сборки начал и концов обмоток.

Схема запуска через самодельный преобразователь

Привожу вариант разработки подачи сдвинутых по фазе токов на обмотки треугольника.

· активное сопротивление резистора на одной фазе создает ток, совпадающий с подводимым напряжением;

· конденсатор обеспечивает опережение тока на 90 градусов;

· дроссель сдвигает ток назад.

Комплексный подход обеспечивает довольно хорошую работу двигателя с высокой устойчивостью к нагрузкам.

Однако здесь в целом низкий КПД и большие потери электричества: сам преобразователь потребляет столько же энергии, как и трехфазный двигатель. Ее двойной расход вряд ли окупится. Анализ работы этой схемы изложен в статье, приведенной по первой ссылке.

Схемы без конденсаторного запуска

Принцип работы основан на применении электронного устройства, сдвигающего фазу тока в одной из обмоток.

Благодаря этому возникает крутящий момент, вращающий ротор.

Источник

Трехфазный двигатель в однофазную сеть: 7 доступных способов

Домашнему мастеру часто приходится возиться с самодельными станками и механизмами, значительно облегчающими работу. Для этих целей используют трехфазный двигатель, подключаемый в однофазную сеть своими руками.

Однако не всегда умельцы добиваются желаемого успеха, а в отдельных случаях они терпят разочарование. Чтобы избежать подобных ошибок рекомендую прочитать материал этой статьи.

Вы узнаете не только технологию работу, но и те трудности, которые сопровождают каждый их семи методов.

Как работает трехфазный двигатель

Изначально его создают для вращения от трех симметрично расположенных в пространстве магнитных потоков, создаваемых протекающими по обмоткам токами от фазных или линейных напряжений сети 380 вольт.

Их в энергетике принято представлять графически: векторными диаграммами.

Другие математические описания, включая методы комплексных чисел, применяются специалистами расчетчиками.

Обмотки трехфазного двигателя в заводском исполнении могут быть собраны по схемам:

Более подробно с этой информацией можно отдельно ознакомиться в статье об однофазном подключении трехфазного двигателя . Надеюсь, что вам будет понятно ее изложение.

При таком подключении двигатель работает с минимальными потерями энергии, имеет лучший КПД. Ведь на этот режим он спроектирован, рассчитан и создан.

Когда трехфазный электродвигатель включают в однофазную сеть, то потери его мощности неизбежны . Они могут превышать 50% или даже больше. Это надо всегда учитывать.

Самый простой способ запуска

Если обмотки собраны в треугольник и на два любых вывода подать напряжение 220 вольт, то можно раскрутить ротор простым шнуром. Обмотав его вокруг вала, а затем резко дернув за свободный конец.

Метод не очень эффективный, но иногда он может пригодиться. Потери мощности здесь большие. Им пользуются очень редко.

Способ №2: конденсаторный запуск схемы звезда

Обмотки собирают концами на одной клемме — нейтрали, а началами выводят на калымную колодку для подключения питающих кабелей.

Напряжение 220 подают через две группы конденсаторов:

Читайте также:  Контроль работы двигателя по форсунке сигнализация

1. рабочую, сдвигающую ток относительно вектора подводимого напряжения на 90 угловых градусов;

2. пусковую, кратковременно облегчающую раскрутку ротора при начале запуска.

Способ №3: конденсаторный запуск схемы треугольника

Технология сборки обмоток отличается от предыдущего метода: они чередуются соединением начала одной с концом последующей.

Для запуска двигателя также подбираются рабочие и пусковые конденсаторы. Они рассчитываются по эмпирическим формулам и должны выдерживать увеличенное линейное напряжение. Минимальная величина должна быть не менее 500 вольт. Иначе возможен их пробой.

Эти две схемы конденсаторного запуска по системе звезды или треугольника являются самыми популярными и доступными.

Способ №4: без конденсаторный запуск трехфазного двигателя

По этой методике создается электронный ключ, который осуществляет сдвиг фазы тока в одной из подключений обмотке на угол φ.

За счет фазового сдвига происходит приложение вращающего момента к ротору, он начинает вращение.

Электронные ключи и способы подключения обмоток могут значительно отключаться. Варианты включения такой схемы показаны ниже.

Более подробно с описанием подобных устройств рекомендую ознакомиться в моей статье о работе трехфазного двигателя в однофазной сети без конденсаторного запуска.

Там рассмотрены три схемы запуска по разным технологиям. Основной недостаток их — потери энергии до 70% от начальной мощности.

Способ №5: индуктивно-емкостной преобразователь

Специальная схема подключения напряжения позволяет сдвигать токи в трех обмотках разными способами:

1. вперед на 90 градусов — за счет включения конденсаторов в одной;

2. назад на 90 градусов — индуктивным сопротивлением дросселя во второй;

3. оставить без изменения подключением активного резистора в третьей.

Схема отличается хорошим преобразованием приложенной мощности, относительно высоким КПД двигателя. Ее основной недостаток —сам преобразователь потребляет примерно столько же энергии, как и электродвигатель.

По этой причине она экономически не выгодна, да и монтаж индуктивно-емкостного преобразователя с резистором не так уж прост.

Я ее описал в статье по первой ссылке. Можете познакомиться более подробно.

Источник

KOMITART — развлекательно-познавательный портал

Разделы сайта

DirectAdvert NEWS

GNEZDO NEWS

Друзья сайта

Статистика

Как подключить трехфазный электродвигатель к сети 220 В. Регулятор оборотов.

Довольно часто для каких-либо хозяйственных нужд требуется использование трехфазного электродвигателя (например, в качестве привода для эл. наждака, циркулярной пилы, бетономешалки и т. д). Известно, что трехфазные электродвигатели рассчитаны и предназначены для работы в трехфазной сети и далеко не всегда в распоряжении домашнего мастера бывает нужное напряжение

380 В, ведь в подавляющем большинстве частные дома и, тем более квартиры подключены к питающей сети

Существуют разные способы включения трехфазного электродвигателя в однофазную сеть

220 В, самым простым и достаточно надежным из которых является применение фазосдвигающего конденсатора в схеме подключения его обмоток. Само название «фазосдвигающий конденсатор» говорит само за себя: он сдвигает ток по фазе на 90°, создавая в нем двухфазный вращающийся магнитный поток, который, собственно и вызывает вращение вала электродвигателя.

На схеме ниже показано подключение фазосдвигающих конденсаторов к обмоткам, соединенным в «звезду» и «треугольник», однако, следует учесть, что для снижения потерь мощности электродвигателя гораздо целесообразнее использовать соединение обмоток электродвигателя по схеме «треугольник».

Схемы подключения трехфазных электродвигателей с различными соединениями обмоток к однофазной сети

Стоит заметить, что для запуска любого электродвигателя требуется б́ольшая емкость конденсатора, чем для его работы (когда двигатель уже «набрал» обороты). Поэтому, на схеме ниже общая емкость «разбита» на два конденсатора: Сп — конденсатор с дополнительной емкостью для пуска электродвигателя и Ср — основной конденсатор с рабочей емкостью. В случае использования электродвигателя небольшой мощности (до 1 кВт) вполне можно «обойтись» лишь рабочей емкостью Ср, исключив из схемы конденсатор Сп.

Схема подключения трехфазного электродвигателя к однофазной сети:

Резистор R включен в схему в качестве сопротивления для разрядки конденсаторов Сп и Ср, для этого подойдет резистор с сопротивлением 300 Ом. Для изменения направления вращения вала электродвигателя, в схеме предусмотрен тумблер переключатель SA.

Для расчета ёмкости рабочего конденсатора можно воспользоваться формулой:

С раб = 4800 • I / U , мкФ – для двигателей с обмотками, соединенными «треугольником»

С раб = 2800 • I / U , мкФ – для двигателей с обмотками, соединенными «звездой»

Это самый точный и наиболее предпочтительный способ расчета ёмкости рабочего конденсатора, но для его использования необходимо знать значение тока I в цепи двигателя, т. е. потребуются дополнительные измерения. Зная номинальную мощность электродвигателя, рассчитать ёмкость рабочего конденсатора можно так-же по формуле:

С раб = 66• Рном , мкФ, где Рном — номинальная мощность электродвигателя.

Говоря проще, для нормальной работы трёхфазного двигателя в сети

220 В рабочий конденсатор должен иметь ёмкость, близкую к 7 мкФ на каждые 0,1 кВт его паспортной мощности.

Определившись с емкостью рабочего конденсатора, можно определить нужное ее значение для пускового конденсатора: она должна быть примерно в 2,5-3 раза больше рабочего емкости рабочего конденсатора.

Конденсаторы рабочей емкости следует использовать следующих типов: МБГЧ, КГБ, БГТ с рабочим напряжением, превышающим сетевое напряжение примерно в 1,5 раза. Чтобы набрать нужную емкость, можно соединить (спаять) конденсаторы параллельно: тогда их общая емкость будет равна суммарной. Пусковую емкость тоже лучше всего набрать из конденсаторов этих типов, но при кратковременном пуске (не более 2-3 сек) можно использовать электролитические, типов КЭ-2, К50-3, ЭГЦ-М с рабочим напряжением не менее 450 в.

Читайте также:  Неисправности головки двигателя змз 402

В заключение стоит сказать, что при включении трехфазного электродвигателя в однофазную сеть

220 В следует иметь ввиду неминуемую потерю его мощности. Если частота вращения уменьшается совсем незначительно в этом режиме, то потеря мощности может составлять 50% от номинальной. Поэтому, лучше в сеть

220 В включать электродвигатели с обмотками, соединенными «треугольником»- в однофазной сети они способны развить до 75% от своей номинальной мощности.

Как известно можно изменять (регулировать) скорость вращения асинхронного безколлекторного электродвигателя изменяя частоту питающего двигатель переменного напряжения. На этом принципе был разработан, приведенный здесь, электронный регулятор скорости вращения. Регулятор позволяет изменять скорость вращения в довольно широких пределах — от 1000 до 4000 об/мин.

Регулятор состоит из задающего генератора с регулируемой частотой от 50 до 200 Гц, в который входят мультивибратор на микросхеме К561ЛА7 , счетчик К561ИЕ8 формирующий сигналы управления с фиксированным «мертвым временем» для управления силовыми полевиками полумоста регулятора.

Выходной трансформатор Т1 обеспечивает развязку верхнего и нижнего транзисторов полумоста. Выпрямитель, удвоитель напряжения питающей сети состоит из диодного моста VD9, включенного по нестандартной схеме и конденсаторов фильтра на которых и удваивается напряжение питания полумоста.
Демпфирующая цепь С4, R7 гасит всплески напряжения опасные для силовых транзисторов VT3, VT4.
Для трансформатора управления ключами, использовался каркас трансформатора от БП телевизора KORFUNG Ч/Б. Можно применить любой другой с аналогичным сечением железа — тип магнитопровода не имеет значения. Первичная обмотка содержит 120 витков провода диаметром 0,7мм, с отводом от середины, вторичная — две отдельные обмотки по 60 витков тем же проводом. Данные по вольтажу обмоток: первичка 2х12 вольт, вторички 12 вольт каждая, если сечение железа отличается от заданного, расчитать можно по формулам для трансформаторов на 50Гц. Марка провода роли не играет (медный).
Обе вторичные обмотки нужно хорошо изолировать друг от друга, так как потенциал между ними достигает 640 вольт. Подключать выходные обмотки к затворам ключей необходимо в противофазе.

Регулятор может работать с двигателями мощностью до 500Вт. Для применения регулятора с более мощными двигателями необходимо применить в схеме большее число силовых ключей в параллельном включении и увеличить емкость конденсаторов фильтра питания С3 и С4.
Конструктивно регулятор выполнен на печатной плате размрами 110 х 80мм, трансформатор управления ключами ставится отдельно.

Чтобы не применять дорогой и сложный коллекторный двигатель в механизмах требующих изменения оборотов двигателя, можно обойтись асинхронным трёхфазным двигателем, введя в фазовый провод реостат или простейший регулятор мощности.

Переделка двигателя заключается в изменении якоря двигателя.
По образцу якоря, установленного в двигателе изготавливается «массивный якорь» из магнитомягкой малоуглеродистой стали или из серого чугуна (СЧ). (Чугунный работает лучше.) Из старого якоря можно выпрессовать вал и насадить на него массивный якорь.

Схема устройства запуска приведена на рисунке ниже.

Двунаправленный электронный ключ выполнен на диодах VD1, VD2 и три-нисторах VS1, VS2. Диоды VD3 и VD4 образуют двухполупериодный выпрямитель сетевого напряжения, а резистор R1 и стабилитрон VD5 — стабилизатор выпрямленного напряжения. Управление тринисторами электронного ключа осуществляется транзисторами VT1, VT2. Момент включения электронного ключа устанавливают резистором R7 «Режим». При минимальном сопротивлении резистора ключ открывается в момент максимального напряжения на обмотке Б электродвигателя (см. рис. 2,6), при максимальном — ключ закрыт. Перед запуском двигателя движок резистора R7 переводят в крайнее нижнее (по схеме) положение, соответствующее максимальному фазовому сдвигу токов и, следовательно, наибольшему пусковому моменту на валу двигателя. После запуска тем же резистором устанавливают оптимальный режим работы двигателя в зависимости от его мощности и нагрузки. Как показала практика, устройство запуска эффективно работает с электродвигателями, частота вращения якоря которых не превышает 1500 об/мин и их обмотки соединены треугольником.

Устройство испытано на работе с двумя двигателями: мощностью 370 Вт (типа АААМ63В4СУ1) 1360 об/мин и мощностью 2000 Вт 1380 об/мин. В обоих случаях оно обеспечивало более уверенный запуск двигателя в сравнении с конденсаторной системой и мощность на валу двигателя после запуска была примерно одинаковой.

Детали устройства монтируют на печатной плате, которую размещают в корпусе из изоляционного материала. Тринисто-ры VS1, VS2 и диоды VD1, VD2 устанавливают на плате без теплоотводов. Резисторы — МЛТ, С2-33, конденсатор — К73-17. Транзисторы VT1 и VT2 могут быть любыми из тех же серий. Вместо диодов Д231, тринисторов КУ202Н можно использовать аналогичные другие с допустимым прямым током не менее 10 А и обратным напряжением не менее 300 В. При работе с устройством запуска следует иметь в виду, что все его элементы находятся под напряжением сети 220 В, поэтому необходимо соблюдать меры предосторожности.

Источник

Оцените статью