Трехфазный двигатель работал на двух фазах

Защита двигателя 380 В от работы на двух фазах

Работа двигателей на двух фазах довольно частое явление. Очень часто причиной работы двигателей на двух фазах является низкая культура эксплуатации электроустановок. Это и не своевременный уход за контактами коммутационных аппаратов и предохранителей, и не своевременная проверка контактных соединений проводов и кабелей на распределительных щитах, пунктах и в шкафах управления и т.д.

Если же повысить культуру эксплуатации электроустановок, то вероятность обрыва цепи в одной фазе из-за плохого контакта будет сведена к минимуму.

Очень часто двигатель может работать на двух фазах, когда силовая цепь двигателя защищается предохранителями, из-за сгорания плавкой вставки в одной фазе в результате короткого замыкания на землю в сети с заземленной нейтралью. Замена предохранителей на автоматические выключатели устраняет саму возможность двухфазного режима.

Для чего же нужна данная защита и чем опасна работа двигателя на двух фазах, сейчас и попытаемся разобраться.

Данная защита защищает двигатель от перегрева, а также от так называемого «опрокидывания», т. е. остановки под током вследствие снижения момента, развиваемого двигателем, при обрыве одной из фаз. Защита действует на отключение и в качестве аппаратов защиты применяются как тепловые, так и электромагнитные реле.

Когда происходит обрыв одной из фаз, ток двигателя с соединением обмоток статора в звезду будет превышать в 1,7-2 раза по сравнению с трехфазным режимом.

Рассмотрим например как отразится обрыв одной из фаз на различных величинах напряжения между различными точками цепи статора двигателя.

Предположим, что двигатель подключен к сети с номинальным линейным напряжением Uл, обмотки статора соединены в звезду и обрыв провода произошел в фазе «А» (рис.1 а).

Рис.1 – Напряжения при работе двигателя на двух фазах

Нас будут интересовать следующие напряжения:

  • UАВ, UВС, UСА – между фазами двигателя;
  • UАО, UВО, UСО – между фазами и нулевой точкой О сети (землей);
  • UО1-О – между нулевой точкой обмотки двигателя и землей; Uразр. — в месте разрыва.

В трехфазном режиме напряжения на двигателе симметричны, т. е. UАВ = UВС= UСА= Uл, UАО= UВО= UСО= Uл/√3= Uф, при этом UО1-О= Uразр.=0.

В двухфазном режиме напряжения становятся несимметричными, степень несимметрии будет зависеть от скольжения s. Если обрыв фазы имел место при холостом ходе двигателя, когда Sxx Защита двигателя 380 В от работы на двух фазах, обрыв в цепи в одной фазе, обрыв одной из фаз, обрыв фазы, работа двигателя на двух фазах

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

1.Феррорезонансы в сети возникают, если величины емкостных токов сети на землю составляют от 0,3 А до 3,5 А на.

Широкое применение микропроцессорных устройств релейной защиты (МУРЗ) в сетях 6-10 кВ дало возможность.

В данной статье будет рассмотрена особенность защиты от замыканий на землю параллельных линий. Так при.

Читайте также:  Какое масло лучше для двигателя не турбового камаза

Здравствуйте! В этой статье я хотел бы поделиться своим опытом, как нужно выполнять защиту от однофазных.

В соответствии с ПУЭ 7-издание пункт 3.2.53 должна предусматриваться газовая защита: на трансформаторах.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Источник

Что происходит с электродвигателем при потере фазы и однофазном режиме работы

Под потерей фазы понимают однофазный режим работы электродвигателя в результате отключения питания по одному из проводов трехфазной системы.

Причинами потери фазы электродвигателем могут быть: обрыв одного из проводов, сгорание одного из предохранителей; нарушение контакта в одной из фаз.

В зависимости от обстоятельств, при которых произошла потеря фазы, могут быть разные режимы работы электродвигателя и последствия, сопутствующие этим режимам. При этом следует принимать во внимание следующие факторы: схему соединения обмоток электродвигателя («звезда» или «треугольник»), рабочее состояние двигателя в момент потери фазы (потеря фазы может произойти до или после включения двигателя, во время работы под нагрузкой), степень загрузки двигателя и механическую характеристику рабочей машины, число электродвигателей, работающих при потере фазы, и их взаимное влияние.

Здесь следует обратить внимание на особенность рассматриваемого режима. В трехфазном режиме каждая фаза обмотки обтекается током, сдвинутым во времени на одну треть периода. При потере фазы две обмотки обтекаются одним и тем же током, в третьей фазе ток отсутствует. Несмотря на то, что концы обмоток присоединены к двумя фазным проводам трехфазной системы, токи в обеих обмотках совпадают по времени. Такой режим работы называется однофазным.

Магнитное поле, образованное однофазным током, в отличие от вращающегося поля, образованного трехфазной системой токов, является пульсирующим. Оно изменяется во времени, но не перемещается по окружности статора. На рисунке 1, а показан вектор магнитного потока, создаваемого в двигателе при однофазном режиме. Этот вектор не вращается, а лишь изменяется по величине и знаку. Круговое поле сплющивается до прямой линии.

Рисунок 1. Характеристики асинхронного двигателя в однофазном режиме: а — графическое изображение пульсирующего магнитного поля; б — разложение пульсирующего поля на два вращающихся; в — механические характеристики асинхронного двигателя в трехфазном (1) и однофазном (2) режимах работы.

Пульсирующее магнитное поле можно рассматривать состоящим из двух вращающихся навстречу друг другу равных по величине полей (рис. 1, б). Каждое поле взаимодействует с обмоткой ротора и образует вращающий момент. Их суммарное действие создает вращающий момент на валу двигателя.

В том случае, когда потеря фазы произошла до включения двигателя в сеть , на неподвижный ротор действуют два магнитных поля, которые образуют два противоположных по знаку, но равных по величине момента. Их сумма будет равна нулю. Поэтому при пуске двигателя в однофазном режиме он не может развернуться даже при отсутствии нагрузки на валу.

Если п отеря фазы произошла в то время, когда ротор двигателя вращался , то на его валу образуется вращающий момент. Это можно объяснить следующим образом. Вращающийся ротор по разному взаимодействует с вращающимися навстречу друг другу полями. Одно из них, вращение которого совпадает с вращением ротора, образует положительный (совпадающий по направлению) момент, другое — отрицательный. В отличие от случая с неподвижным ротором эти моменты будут разными по величине. Их разность будет равна моменту на валу двигателя.

На рисунке 1, в показана механическая характеристика двигателя в однофазном и трехфазном режимах работы. При нулевой скорости момент равен нулю, при появлении вращения в любую сторону на валу двигателя возникает момент.

Если отключение одной из фаз произошло во время работы двигателя, когда его скорость была близка к номинальному значению, вращающий момент часто бывает достаточным для продолжения работы с небольшим снижением скорости. В отличие от трехфазного симметричного режима появляется характерное гудение. В остальном внешние проявления аварийного режима не наблюдаются. Человек, не имеющий опыта работы с асинхронными двигателями, может не заметить изменения характера работы электродвигателя.

Читайте также:  При запуске двигателя горит контрольная лампа зарядки аккумулятора

Переход электродвигателя в однофазный режим сопровождается перераспределением токов и напряжений между фазами. Если обмотки двигателя соединены по схеме «звезда», то после потери фазы образуется схема, показанная на рисунке 2. Две последовательно соединенные обмотки двигателя оказываются включенными на линейное напряжение Uа b , двигатель при этом оказывается в однофазном режиме работы.

Сделаем небольшой расчет, определим токи, протекающие по обмоткам двигателя и сравним их с токами при трехфазном питании.

Рисунок 2. Соединение обмоток двигателя по схеме «звезда» после потерн фазы

Так как сопротивления Zа и Zв соединены последовательно, напряжения на фазах А и В будут равны половине линейного:

Приближенно величину тока можно определить исходя из следующих соображений.

Пусковой ток фазы А при потере фазы

Пусковой ток фазы А при трехфазном режиме

где U ao — фазовое напряжение сети.

Отношение пусковых токов:

Из соотношения следует, что при потере фазы пусковой ток составляет 86% от величины пускового тока при трехфазном питании. Если учесть, что пусковой ток короткозамкнутого асинхронного двигателя в 6 — 7 раз больше номинального, то получается, что по обмоткам двигателя протекает ток Ii ф = 0,86 х 6 = 5,16 I н, т. е. в пять с лишним раз превышающий номинальный. За короткий промежуток времени такой ток перегреет обмотку.

Из приведенного расчета видно, что рассматриваемый режим работы весьма опасен для двигателя и в случае его возникновения защита должна отключить с незначительной выдержкой времени.

Потеря фазы может произойти и после включения двигателя, когда его ротор будет иметь скорость вращения, соответствующую рабочему режиму. Рассмотрим токи и напряжения обмоток в случае перехода в однофазный режим при вращающемся роторе.

Величина Z a зависит от скорости вращения. При пуске, когда скорость вращения ротора равна нулю, она одинакова как для трехфазного, так и для однофазного режима. В рабочем режиме в зависимости от нагрузки и механической характеристики двигателя скорость вращения может быть разной. Поэтому для анализа токовых нагрузок необходим другой подход.

Будем считать, что как в трехфазном, так и в однофазном режиме двигатель развивает. одинаковую мощность. Независимо от схемы включения электродвигателя рабочая машина требует ту же самую мощность, которая необходима для выполнения технологического процесса.

Полагая мощности на валу двигателя равными для обоих режимов, будем иметь:

при трехфазном режиме

при однофазном режиме

где U a — фазовое напряжение сети; U a o — напряжение на фазе А в однофазном режиме , cos φ 3 и cos φ 1 — коэффициенты мощности при трехфазном и однофазном режимах соответственно .

Опыты с асинхронным двигателем показывают, что фактически ток возрастает почти вдвое. С некоторым запасом можно считать I1a / I2a = 2 .

Для того чтобы судить о степени опасности однофазного режима работы, нужно также знать загрузку двигателя.

В первом приближении будем считать ток электродвигателя в трехфазном режиме пропорциональным его нагрузке на валу. Такое допущение справедливо при нагрузках более 50% от номинального значения. Тогда можно написать I ф = K з х I н, где K з — коэффициент загрузки двигателя, I н — номинальный ток двигателя.

Ток при однофазном режиме I1 ф = 2 K з х I н, т. е. ток при однофазном режиме будет зависеть от загрузки двигателя. При номинальной нагрузке он равен двойному номинальному току. При нагрузке менее 50% потеря фазы при соединении обмоток двигателя в «звезду» не создает опасного для обмоток превышения тока. В большинстве случаев коэффициент загрузки двигателя меньше единицы. При его значениях порядка 0,6 — 0,75 следует ожидать небольшого превышения тока (на 20— 50%) по сравнению с номинальным. Это существенно для работы защиты, так как именно в этой области перегрузок она действует недостаточно четко.

Для анализа некоторых способов защиты необходимо знать напряжение на фазах двигателя. При заторможенном роторе напряжение на фазах А и В будет равно половине линейного напряжения U ab , а напряжение на фазе С будет равно нулю.

Читайте также:  Лучший двигатель для пежо эксперт

Иначе распределяется напряжение при вращающемся роторе. Дело в том, что его вращение сопровождается образованием вращающегося магнитного поля, которое, действуя на обмотки статора, наводит в них электродвижущую силу. Величина и фаза этой электродвижущей силы таковы, что при скорости вращения, близкой к синхронной, на обмотках восстанавливается симметричная система трехфазного напряжения, а напряжение нейтрали звезды (точка 0) становится равным нулю. Таким образом, при изменении скорости вращения ротора от нуля до синхронной в однофазном режиме работы напряжение на фазах А и В изменяется от значения, равного половине линейного, до значения, равного фазовому напряжению сети. Например, в системе напряжения 380/220 В напряжение на фазах А и В изменяется в пределах 190 — 220 В. Напряжение Uco изменяется от нуля при заторможенном роторе до фазового напряжения 220 В при синхронной скорости. Что же касается напряжения в точке 0, то оно изменяется от значения Uab/2 — до нуля при синхронной скорости.

Если обмотки двигателя соединены по схеме «треугольник», то после потери фазы мы будем иметь схему соединений, показанную на рисунке 3. В этом случае обмотка двигателя с сопротивлением Z ab оказывается включенной на линейное напряжение U ab , а обмотка с сопротивлениями Z fc и Z bc — соединенной последовательно и включенной на то же самое линейное напряжение.

В пусковом режиме по обмоткам АВ будет протекать такой же ток, как и при трехфазном варианте, а по обмоткам АС и ВС будет протекать ток в два раза меньший, так как эти обмотки соединены последовательно.

Токи в линейных проводах I’ a= I’ b будут равны сумме токов в параллельных ветвях: I ‘А = I ‘a b + I ‘ bc = 1 ,5 Iab

Таким образом, в рассматриваемом случае при потере фазы пусковой ток в одной из фаз будет равен пусковому току при трехфазном питании, а линейный ток возрастает менее интенсивно.

Для расчета токов в случае потери фазы после включения двигателя в работу применим тот же метод, что и для схемы «звезда». Будем считать, что как в трехфазном, так и в однофазном режимах двигатель развивает одинаковую мощность.

В этом режиме работы ток в наиболее нагруженной фазе при потере фазы увеличивается вдвое по сравнению с током при трехфазном питании. Ток в линейном проводе будет равен I’ А = 3 Iab , а при трехфазном питании Ia = 1 ,73 Iab .

Здесь важно отметить, что в то время как фазовый ток возрастает в 2 раза, линейный ток увеличивается только в 1,73 раза. Это существенно, так как токовая защита реагирует на линейные токи. Расчеты и выводы относительно влияния коэффициента загрузки на ток однофазного режима при соединении «звезда» остаются в силе и для случая схемы «треугольник».

Напряжения на фазах АС и ВС будут зависеть от скорости вращения ротора. При заторможенном роторе U a c’ = U b c ‘ = Uab/2

При скорости вращения, равной синхронной, восстанавливается симметричная система напряжений, т. е. U a c’ = U b c ‘ = Uab .

Таким образом, напряжения на фазах АС и ВС при изменениях скорости вращения от нуля до синхронной будут меняться от значения, равного половине линейного, до значения, равного линейному напряжению.

Токи и напряжения на фазах двигателя при однофазном режиме зависят также и от числа двигателей.

Часто обрыв фазы происходит из-за перегорания одного из предохранителей на питающем фидере подстанции или распределительного устройства. В результате в однофазном режиме оказывается группа потребителей, взаимно влияющих друг на друга. Распределение токов и напряжений зависит от мощности отдельных двигателей и их нагрузки. Здесь возможны различные варианты. Если мощности электродвигателей равны, а их нагрузка одинакова (например, группа вытяжных вентиляторов), то всю группу двигателей можно заменить одним эквивалентным.

Источник

Оцените статью