Трехфазный двигатель как ветрогенератор

Как сделать генератор для ветряка из асинхронного двигателя своими руками

Обновлено: 11 марта 2020

Этапы

  • изготовление ротора
  • создание генератора

Эти работы между собой не имеют практически ничего общего, так как надо сделать разные по сути и назначению узлы системы. Для изготовления того и другого элемента используются подручные механизмы и приспособления, которые можно использовать или переделать в необходимый узел. Один из вариантов создания генератора, часто используемый при изготовлении ветрогенератора — изготовление из асинхронного электродвигателя, которое наиболее удачно и качественно позволяет решить проблему. Рассмотрим вопрос подробнее:

Изготовление генератора из асинхронного двигателя

Асинхронный двигатель является наилучшей «заготовкой» для изготовления генератора. Он имеет для этого наилучшие показатели по устойчивости к короткому замыканию, менее требователен к попаданию пыли или грязи. Кроме того, асинхронные генераторы вырабатывают более «чистую» энергию, клирфактор (наличие высших гармоник) у этих устройств всего 2% против 15% у синхронных генераторов. Высшие гармоники способствуют нагреву двигателя и сбивают режим вращения, поэтому их малое количество является большим плюсом конструкции.

Асинхронные устройства не имеют вращающихся обмоток, что в значительной степени снимает возможность выхода их из строя или повреждения от трения или замыкания.

Также важным фактором является наличие на выходных обмотках напряжения в 220В или 380 В, что позволяет подключать приборы потребления прямо к генератору, минуя систему стабилизации тока. То есть, пока есть ветер, приборы будут работать точно так же, как от сети.

Единственное отличие от работы полного комплекса в прекращении работы сразу же после стихания ветра, тогда как аккумуляторы, входящие в комплект, какое-то время питают потребляющие устройства используя свою емкость.

Как переделать ротор

Единственным изменением, которое вносится в конструкцию асинхронного двигателя при переделывании его в генератор, является установка на ротор постоянных магнитов. Для получения большей силы тока иногда перематывают обмотки более толстым проводом, имеющим меньшее сопротивление и дающим лучшие результаты, но эта процедура не критична, можно обойтись и без нее — генератор будет работать.

Ротор асинхронного двигателя не имеет никаких обмоток или иных элементов, являясь, по сути, обычным маховиком. Обработка ротора производится в токарном станке по металлу, обойтись без этого никак нельзя. Поэтому при создании проекта надо сразу решить вопрос с техническим обеспечением работ, найти знакомого токаря или организацию, занимающуюся такими работами. Ротор надо уменьшить в диаметре на толщину магнитов, которые будут на него установлены.

Существует два способа монтажа магнитов:

  • изготовление и установка стальной гильзы, которая одевается на предварительно уменьшенный в диаметре ротор, после чего на гильзу крепятся магниты. Этот способ дает возможность увеличить силу магнитов, плотность поля, способствующую более активному образованию ЭДС
  • уменьшение диаметра только на толщину магнитов плюс необходимый рабочий зазор. Этот способ проще, но потребует установки более сильных магнитов, лучше всего — неодимовых, которые имеют намного большее усилие и создают мощное поле.
Читайте также:  Один оборот двигателя есть искра а потом нет

Установка магнитов производится по линиям конструкции ротора, т.е. не воль оси, а несколько смещенными по направлению вращения (на роторе эти линии хорошо видны). Магниты расставляются по чередованию полюсов и фиксируются на роторе с помощью клея (рекомендуется эпоксидная смола). После ее высыхания можно производить сборку генератора, в который отныне превратился наш двигатель, и переходить к испытательным процедурам.

Испытания вновь созданного генератора

Эта процедура позволяет выяснить степень работоспособность генератора, опытным путем определить скорость вращения ротора, необходимую для получения нужного напряжения. Обычно прибегают к помощи другого двигателя, например, электродрели с регулируемой частотой вращения патрона. Вращая ротор генератора с подключенным к нему вольтметром или лампочкой, проверяют, какие скорости необходимы для минимума и каков максимальный предел мощности генератора, чтобы получить данные, на основе которых будет создаваться ветряк.

Можно в испытательных целях подключить какой-либо прибор потребления (например, нагреватель или осветительное устройство) и убедиться в его работоспособности. Это поможет снять все возникающие вопросы и внести какие-либо изменения, если возникнет такая необходимость. Например, иногда возникают ситуации с «залипанием» ротора, не стартующего при слабых ветрах. Это происходит при неравномерном распределении магнитов и устраняется разборкой генератора, отсоединением магнитов и повторным их укреплением в более равномерной конфигурации.

По завершении всех работ в распоряжении появляется полностью рабочий генератор, который отныне нуждается в источнике вращения.

Изготовление ветряка

Для создания ветряка потребуется выбрать какой-либо из вариантов конструкции, которых имеется немало. Так, существуют горизонтальные или вертикальные конструкции ротора (в данном случае термин «ротор» обозначает вращающуюся часть ветрогенератора — вал с лопастями, приводимый в движение силой ветра). Горизонтальные роторы имеют более высокую эффективность и устойчивость в производстве энергии, но нуждаются в системе наведения на поток, которая, в свою очередь, нуждается в легкости вращения на валу.

Чем мощнее генератор, тем труднее его вращать и тем большее усилие должен развивать ветряк, что требует его больших размеров. При этом, чем крупнее ветряк, тем он тяжелее и обладает большей инерцией покоя, что образует замкнутый круг. Обычно используют средние значения и величины, дающие возможность образовать компромисс между размерами и легкостью вращения.

Вертикальные ветряки проще в изготовлении и не требовательны к направлению ветра. При этом, они имеют меньшую эффективность, так как ветер с одинаковой силой воздействует на обе стороны лопасти, затрудняя вращение. Для того, чтобы избежать этого недостатка, создано множество различных конструкций ротора, таких как:

  • ротор Савониуса
  • ротор Дарье
  • ротор Ленца

Известны ортогональные конструкции (разнесенные относительно оси вращения) или геликоидные (лопасти, имеющие сложную форму, напоминающую витки спирали). Все эти конструкции имеют свои достоинства и недостатки, основным из которых является отсутствие математической модели вращения того или иного вида лопастей, делающего расчет крайне сложным и приблизительным. Поэтому действуют методом проб и ошибок — создается экспериментальная модель, выясняются ее недостатки, с учетом которых изготавливается рабочий ротор.

Наиболее простая и распространенная конструкция — ротор Савониуса, но в последнее время в сети появляется множество описаний других ветрогенераторов, созданных на базе других видов.

Устройство ротора несложно — вал на подшипниках, на верхней части которого укреплены лопасти, которые под действием ветра вращаются и передают крутящий момент на генератор. Изготовление ротора осуществляется из доступных материалов, монтаж не требует чрезмерной высоты (обычно поднимают на 3-7 м), это зависит от силы ветров в регионе. Вертикальные конструкции почти не требуют ухода или обслуживания, что облегчает эксплуатацию ветрогенератора.

Читайте также:  Газ 31105 волга 406 двигатель тех характеристика

Источник

Как сделать трёхфазный ветрогенератор своими руками?

Главная страница » Как сделать трёхфазный ветрогенератор своими руками?

Конструкции ветряных генераторов для применения в домашних условиях представлены обширным набором вариаций. Между тем большая часть рассматриваемых схем ветрогенераторов, как правило, основана на использовании стандартных электродвигателей. Моторы подбирают, исходя из оптимальных параметров работы в режиме генератора, либо модернизируют – добавляют магниты, перематывают и т.д. Эффективность таких установок крайне низка. Между тем существует интересный вариант конструкции своими руками – трёхфазный ветрогенератор мощностью около 1000 Вт, где готовый электродвигатель не применяется.

Ветрогенератор 1000 Вт на три фазы своими руками

Основное отличие такой конструкции от типичных существующих вариантов – изготовление «с нуля» генератора – главного компонента трёхфазной ветрогенераторной установки, а также механической части — узла подшипников вала винта. Всё остальное:

  • винт,
  • лопасти,
  • опорная штанга,
  • система автоматики,

выполняются согласно классическим конструкциям ветряных генераторов, подходящих под условия домашнего хозяйства. Поэтому рассмотрим основу темы – изготовление своими руками трёхфазного генератора ветряка на неодимовых магнитах.

Конструкция трёхфазного ветрогенератора содержит:

  1. Диски магнитные (2 шт.).
  2. Неодимовые магниты (12 шт.).
  3. Диск индуктивности (1 шт.).

В собранном виде диск индуктивности закреплён и остаётся неподвижным, а диски с неодимовыми магнитами, закреплённые на валу винта, вращаются силой ветра. В результате магнитным полем в проводниках катушек формируется ЭДС.

Изготовление магнитных дисков своими руками

Диски диаметром 500 мм, под установку неодимовых магнитов, вырезаются из материала, подобного листовым облицовочным строительным панелям. Вырезанную заготовку нужно разметить:

  • внешний край дисковой области под равномерное размещение дюжины прямоугольных магнитных элементов,
  • центральную область под изготовление отверстия для посадки на вал винта трёхфазного ветрогенератора.

Далее под каждый отдельно взятый неодимовый магнит размечается и вырезается инсталляционное поле – по форме соответствующее форме магнита. Эту работу удобно проделать с помощью электролобзика, используя подходящую опору для листа материала.

Подготовка дисковой основы под размещение неодимовых магнитов. Размеченные места посадки удобно вырезаются электрическим инструментом — электролобзиком

На следующем этапе производства трёхфазного ветрогенератора своими руками, изготовленные диски, оснащённые неодимовыми магнитами, необходимо залить эпоксидной смолой. Для этого из пластиковой плёнки делают большие стаканы, как показано на картинке ниже.

Пример сооружения большого стакана под заливку эпоксидной смолой уложенных по вырезам неодимовых магнитов. В центре основы просверлено отверстие под крепление

Оснастив детали трёхфазного ветрогенератора пластиковыми стаканами, полученные заготовки под заливку следует разместить на строго горизонтальной ровной поверхности.

В центральной части диска установить малый стакан, склеенный из толстой бумаги (диаметр 50 мм). Благодаря этой вставке, будет сформирован посадочный круг для узла подшипников.

Процедура заливки магнитной дисковой основы ветрогенератора эпоксидной смолой. Для лучшей текучести смолу можно немного подогреть выше комнатной температуры

Останется аккуратно залить внутрь стаканов жидкую эпоксидную смолу до уровня немного ниже (1 – 2 мм) уровня верхней стороны неодимовых магнитов.

Дождаться полного затвердения эпоксидной смолы. В результат должны получиться две детали трёхфазного ветрогенератора, подобные той, что на картинке ниже.

Так выглядит готовый магнитный диск ветрогенератора, после полного застывания эпоксидной смолы. В общей сложности требуется изготовить два экземпляра

Изготовление диска индуктивностей трёхфазного ветрогенератора

Прежде чем делать дисковое плато под катушки индуктивности, логично изготовить необходимое число непосредственно катушек. В общей сложности для трёхфазного ветрогенератора потребуется девять элементов индуктивности.

Читайте также:  Стук компенсаторов на холодном двигателе приора 16 клапанов

Под изготовление индуктивностей генератора ветряка используется медный провод диаметром 1,4 мм. Намотка ведётся сдвоенным проводом.

Количество витков каждой катушки – 35, при условии применения в составе трёхфазной ветрогенераторной установки 12-вольтных аккумуляторных батарей.

Если вместо 12-вольтовых аккумуляторов предполагается применять 24-вольные АКБ, соответственно, число витков увеличивают вдвое – до 70. Для намотки катушек индуктивности удобно пользоваться нехитрым приспособлением, как на картинке ниже:

Несложное приспособление, состоящее из двух деревянных пластин круглой формы и шпильки с резьбой под гайки, помогает быстро намотать нужное число катушек

После приготовления требуемого числа катушек (9 шт.), изготавливается дисковое плато с размещёнными элементами индуктивности.

Для производства дискового плато индуктивностей потребуется изготовить форму под заливку на основе фанерного листа или подобного материала.

Приготовление формы под заливку эпоксидной смолой и равномерное распределение катушек по кругу

Катушки индуктивности размещают равномерно по всей окружности изготовленной формы, предварительно выстелив место укладки диэлектрической антистатической тканью.

Поверх катушек также настилают слой ткани, после чего заливают форму эпоксидной смолой до верхнего уровня индуктивностей. Неровности заливки сглаживают кистью.

Процедура заливки, до начала которой необходимо все элементы закрыть специальным материалом, исключающим появление статического электричества

Схема соединений индуктивностей трёхфазного ветрогенератора

Выводы катушек, залитых смолой на плато индуктивностей, потребуется спаять в соответствии с трёхфазной конфигурацией. На приведённой ниже схеме наглядно показаны пути соединений. Получается конфигурация спайки: 1-4-7; 2-5-8; 3-6-9; соответственно.

Схема соединения всех девяти катушек индуктивности, размещённых на дисковом плато. Так получают трёхфазный выход ветрогенератора

Для того чтобы полученное на трёхфазном генераторе напряжение выпрямить и получить однофазное постоянное напряжение, используются схемы выпрямительных устройств.

Выпрямленное напряжение перенаправляется через модуль автоматики на зарядное устройство. Далее полученная трёхфазным ветрогенератором энергия аккумулируется в батареях. Можно использовать любой классический вариант контроллера заряда, к примеру, такой как здесь.

Принципиальная схема для сборки трёхфазного выпрямителя. На выходе получают однофазное постоянное напряжение, пригодное для подачи на зарядный модуль

Подшипниковый узел на трёхфазный ветрогенератор

Учитывая чувствительность дисковой схемы трёхфазного ветрогенератора к перекосам и вибрациям, особого внимания заслуживает подшипниковый узел.

Вариантов разработки такого узла может быть много. Но в любом варианте требуется применять надёжные, точные, высокооборотные подшипники.

Разработчиками этой конструкции применялись роликовые подшипники (2 шт.), которые устанавливались внутри узла, выполненного по принципу «труба в трубе». Внутренняя труба исполняет роль промежуточного звена между подшипниками.

Вариант сборки подшипникового узла для трёхфазного ветрогенератора. Этот узел должен выполняться особо тщательно с применением надёжных подшипников

После сборки в единое целое всех описанных деталей конструкции трёхфазного ветрогенератора, получается достаточно мощная энергетическая установка.

По результатам испытаний такой трёхфазный ветрогенератор способен в среднем выдавать до 1000 Вт мощности.

Винт ветрогенератора на три фазы выполняется классическим трёхлопастным вариантом. Размах лопастей – 1,8 метра. Получается примерно такая конструкция, как показано ниже.

Конечный результат – домашняя ветрогенераторная установка мощностью до 1000 Вт. Это уже более серьёзное оборудование по сравнению с ветряками на основе электродвигателей

При помощи информации: Instructables

Гребной винт: критерии выбора на лодочный мотор

Конус-замковая полумуфта: технология посадки и съёма шкивов на механические валы

Как работать с механизмами передач велосипеда?

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Источник

Adblock
detector