Трехфазный асинхронный двигатель определить схему обмоток

Содержание
  1. Как определить начала и концы фаз обмотки асинхронного двигателя
  2. Трехфазный асинхронный двигатель
  3. Трехфазный асинхронный двигатель с короткозамкнутым ротором
  4. Конструкция асинхронного электродвигателя
  5. Принцип работы. Вращающееся магнитное поле
  6. Концепция вращающегося магнитного поля
  7. Действие вращающегося магнитного поля на замкнутый виток
  8. Короткозамкнутый ротор асинхронного двигателя
  9. Скольжение асинхронного двигателя. Скорость вращения ротора
  10. Звезда и треугольник
  11. Обозначение выводов статора трехфазного электродвигателя
  12. Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента
  13. Управление асинхронным двигателем
  14. Прямое подключение к сети питания
  15. Нереверсивная схема
  16. Реверсивная схема
  17. Плавный пуск асинхронного электродвигателя
  18. Частотное управление асинхронным электродвигателем
  19. Трехфазный асинхронный двигатель с фазным ротором
  20. Конструкция АДФР
  21. Фазный ротор
  22. Статор АДФР
  23. Обозначение выводов вторичных обмоток трехфазного АДФР
  24. Пуск АДФР

Как определить начала и концы фаз обмотки асинхронного двигателя

Напряжения сети и схемы статорных обмоток электродвигателя

Если в паспорте электродвигателя указано, например, 220/380 в, это означает, что электродвигатель может быть включен как в сеть 220 в (схема соединения обмоток — треугольник), так и в сеть 380 в (схема соединения обмоток — звезда). Статорные обмотки асинхронного электродвигателя имеют шесть концов.

По ГОСТу обмотки асинхронного двигателя имеют следующие обозначения: I фаза — С1 (начало), С4 (конец), II фаза — С2 (начало), С5 (конец), III фаза — С3 (начало), С6 (конец).

Рис. 1. Схема подключения обмоток асинхронного двигателя: а — в звезду, б — в треугольник, в — исполнение схем «звезда» и «треугольник» на доске зажимов.

Если в сети напряжения равно 380 В, то обмотки статора двигателя должны быть соединены по схеме «звезда». В общую точку при этом собраны или все начала (С1, С2, С3), или все концы (С4, С5, С6). Напряжение 380 в приложено между концами обмоток АВ, ВС, СА. На каждой же фазе, то есть между точками О и А, О и В, О и С, напряжение будет в √ З раз меньше: 380/√ З = 220 В.

Если в сети напряжение 220 В (при системе напряжений 220/127 В, что в настоящее время, практически нигде не встречается) обмотки статора двигателя должны быть соединены по схеме «треугольник».

В точках А, В и С соединяются начало (Н) предыдущей с концом (К) последующей обмотки и с фазой сети (рис. 1, б). Если предположить, что между точками А и В включена I фаза, между точками В и С — II, а между точками С и А — III фаза, то при схеме «треугольник» соединены: начало I (С1) с концом III (С6), начало II (С2) с концом I (С4) и начало III (С3) с концом II (С5).

У некоторых двигателей концы фаз обмотки выведены на доску зажимов. По ГОСТу, начала и концы обмоток выводят .в том порядке, как эго показано на рисунке 1, в.

Если теперь необходимо соединить обмотки двигателя по схеме «звезда», зажимы, на которые выведены концы (или начала), замыкают между собой, а к зажимам двигателя, на которые выведены начала (или концы), присоединяют фазы сети.

При соединении обмоток двигателя в «треугольник» соединяют, зажимы по вертикали попарно и к перемычкам присоединяют фазы сети. Вертикальные перемычки соединяют начало I с концом III фазы, начало II с концом I фазы и начало III с концом II фазы.

При определении схемы соединения обмоток можно пользоваться следующей таблицей:

Напряжение, указанное в паспорте электродвигателя, В

Напряжение в сети, В

127 220 380 127 / 220 треугольник звезда — 220 / 380 — треугольник звезда 380 / — — — треугольник

Определение согласованных выводов (начал и концов) фаз статорной обмотки.

На выводах статорных обмоток двигателя обычно имеются стандартные обозначения па металлических обжимающих кольцах. Однако эти обжимающие кольца теряются. Тогда возникает необходимость определить согласованные выводы. Это выполняют в такой последовательности.

Сначала при помощи контрольной лампы определяют пары выводов, принадлежащих отдельным фазным обмоткам (рис. 2).

Рис. 2 . Определение фазных обмоток при помощи контрольной лампы.

К зажиму сети 2 подключают один из шести выводов статорной обмотки двигателя, а к другому зажиму сети 3 подключают один конец контрольной лампы. Другим концом контрольной лампы поочередно касаются каждого из остальных пяти выводов статорных обмоток до тех пор, пока лампа не загорится. Если лампа загорелась, значит, два вывода, присоединенные к сети, принадлежат одной фазе.

Необходимо следить при этом, чтобы выводы обмоток не замыкались друг с другом. Каждую пару выводов помечают (например, завязав ее узелком).

Определив фазы статорной обмотки, приступают ко второй части работы — определению согласованных выводов или «начал» и «концов». Эта часть работы может быть выполнена двумя способами.

1. Способ трансформации. В одну из фаз включают контрольную лампу. Две другие фазы соединяют последовательно и включают и сеть на фазное напряжение.

Если эти две фазы оказались включенными так, что и точке О условный «конец» одной фазы соединен с условным «началом» другой (рис. 3, а), то магнитный ноток ∑Ф пересекает третью обмотку и индуктирует в ней ЭДС.

Лампа укажет наличие ЭДС небольшим накалом. Если накал незаметен, то следует применить в качестве индикатора вольтметр со шкалой до 30 — 60 В.

Рис. 3. Определение начал и концов в фазных обмотках двигателя методом трансформации

Если в точке О встретятся, например, условные «концы» обмоток (рис. 3, б), то магнитные потоки обмоток будут направлены противоположно друг другу. Суммарный поток будет близок к нулю, и лампа не даст накала (вольтметр покажет О). В данном случае выводы, принадлежащие какой-либо из фаз, следует поменять местами и включить снова.

Читайте также:  Какие двигатели ставят на мотоблок каскад

Если накал у лампы есть (или вольтметр показывает некоторое напряжение), то концы следует пометить. На одни из выводов, которые встретились в общей точке О, надевают бирку с пометкой Н1 (начало I фазы), а на другой вывод — К3 (или К2).

Бирки К1 и Н3 (или Н2) надевают па выводы, находящиеся в общих узелках (завязанных при выполнении первой части работы) с Н1 и К3 соответственно.

Для определения согласованных выводов третьей обмотки собирают схему, представленную на рисунке 3, в. Лампу включают в одну из фазе уже обозначенными выводами.

2. Способ подбора фаз. Этот способ определения согласованных выводов (начал и концов) фаз статорной обмотки можно использовать для двигателей небольшой мощности — до 3 — 5 кВт.

Рис. 4. Определение «начал» и «концов» обмотки методом подбора схемы «звезда».

После того как определены выводы отдельных фаз, их наугад соединяют в звезду (по одному выводу от фазы подключают к сети, а по одному — соединяют в общую точку) и включают двигатель в сеть. Если в общую точку попали все условные «начала» или все «концы», то двигатель будет работать нормально.

Но если одна из фаз ( III ) оказалась «перевернутой» (рис. 4, а), то двигатель сильно гудит, хотя и может вращаться (но легко может быть заторможен). В этом случае выводы любой из обмоток наугад (например, I ) следует поменять местами (рис. 4, б).

Если двигатель опять гудит и плохо работает, то фазу следует снова включить, как прежде (как в схеме а), но повернуть другую фазу — III (рис. 3, в).

Если двигатель и после этого гудит, то эту фазу следует также поставить по-прежнему, а повернуть следующую фазу — II.

Когда двигатель станет работать нормально (рис. 4, в), все три вывода, которые соединены в общую точку, следует пометить одинаково, например «концами», а противоположные — «началами». После этого можно собирать рабочую схему, указанную в паспорте двигателя.

Источник

Трехфазный асинхронный двигатель

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

,

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Читайте также:  Волга 31105 двигатель 406 инжектор технические характеристики

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2 Трехфазный ток (разница фаз 120°)

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение — разница потенциалов между началом и концом одной фазы. Другое определение для соединения «звезда»: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы «треугольник» отсутствует нейтраль).

Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).

Звезда Треугольник Обозначение
Uл, Uф — линейное и фазовое напряжение, В,
Iл, Iф — линейный и фазовый ток, А,
S — полная мощность, Вт
P — активная мощность, Вт

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза U1 U2
вторая фаза V1 V2
третья фаза W1 W2
Соединение в звезду (число выводов 3 или 4)
первая фаза U
вторая фаза V
третья фаза W
точка звезды (нулевая точка) N
Соединение в треугольник (число выводов 3)
первый вывод U
второй вывод V
третий вывод W
Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза C1 C4
вторая фаза C2 C5
третья фаза C3 C6
Соединение звездой (число выводов 3 или 4)
первая фаза C1
вторая фаза C2
третья фаза C3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод C1
второй вывод C2
третий вывод C3

Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента

Трехфазные асинхронные электродвигатели могут быть подключены к однофазной сети с помощью фазосдвигаюших элементов. При этом электродвигатель будет работать либо в режиме однофазного двигателя с пусковой обмоткой (рисунок а, б, г) либо в режиме конденсаторного двигателя с постоянно включенным рабочим конденсатором (рисунок в, д, е).

Схемы подключения трехфазного асинхронного электродвигателя к однофазной сети

Схемы приведенные на рисунке «а», «б», «д» применяются, когда выведены все шесть концов обмотки. Электродвигатели с соединением обмоток согласно схемам «а», «б», «г» практически равноценны двигателям, которые спроектированы как однофазные электродвигатели с пусковой обмоткой. Номинальная мощность при этом состовляет 40-50% от мощности в трехфазном режиме, а при работе с рабочим конденсатором 75-80%.

Емкость рабочего конденсатора при частоте тока 50 Гц для схем «в», «д», «е» примерно рассчитывается соответственно по формулам:

  • ,где Cраб — емкость рабочего конденсатора, мкФ,
  • Iном – номинальный (фазный) ток статора трехфазного двигателя, А,
  • U1 – напряжение однофазной сети, В.

Управление асинхронным двигателем

    Способы подключения асинхронного электродвигателя к сети питания:
  • прямое подключение к сети питания
  • подключение от устройства плавного пуска
  • подключение от преобразователя частоты

Варианты подключения асинхронного электродвигателя с помощью магнитного пускателя (слева), устройства плавного пуска (посеридине) и частотного преобразователя (справа). Схемы представлены в упрощенном виде.
FU1-FU9 — плавкие предохранители, KK1 — тепловое реле, KM1 — магнитный пускатель, L1-L3 — контакты для подключения к сети трехфазного переменного тока, M1-M3 — асинхронные электродвигатели, QF1-QF3 — автоматические выключатели, UZ1 — устройство плавного пуска, UZ2 — преобразователь частоты

Прямое подключение к сети питания

Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.

С помощью магнитных пускателей можно реализовать схему:

  • нереверсивного пуска: пуск и остановка;
  • реверсивного пуска: пуск, остановка и реверс.

Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.

Читайте также:  Как проверить обороты двигателя мотоцикла

Нереверсивная схема

Реверсивная схема

Недостатком прямой коммутации обмоток асинхронного электродвигателя с сетью является наличие больших пусковых токов, во время запуска электродвигателя.

Плавный пуск асинхронного электродвигателя

В задачах, где не требуется регулировка скорости электродвигателя во время работы для уменьшения пусковых токов используется устройство плавного пуска.

Устройство плавного пуска защищает асинхронный электродвигатель от повреждений вызванных резким увеличением потребляемой энергии во время пуска путем ограничения пусковых токов. Устройство плавного пуска позволяет обеспечить плавный разгон и торможение асинхронного электродвигателя.

Устройство плавного пуска дешевле и компактнее частотного преобразователе. Применяется там, где регулировка скорости вращения и момента требуется только при запуске.

Частотное управление асинхронным электродвигателем

Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.

    Использование частотного преобразователя позволяет:
  • уменьшить энергопротребление электродвигателя;
  • управлять скоростью вращения электродвигателя (плавный запуск и остановка, регулировка скорости во время работы);
  • избежать перегрузок электродвигателя и тем самым увеличить его срок службы.

Функциональная схема частотно-регулируемого привода

    В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
  • скалярное управление;
  • векторное управление.

Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).

Скалярное управление асинхронным двигателем с датчиком скорости

Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.

Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.

Полеориентированное управления асинхронным электродвигателем по датчику положения ротора

Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.

    По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
  • полеориентированное управление по датчику;
  • полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).

Полеориентированное управления асинхронным электродвигателем без датчика положения ротора

Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M
Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов [3].

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

Источник

Оцените статью