Теория реактивных двигателей рабочий процесс и характеристики

Как устроен реактивный двигатель

Реактивный двигатель – так называемое устройство, предназначенное для передвижения, как правило, в воздухе этого же устройства и, как правило, сопряженное совместно с каким-либо агрегатом (аппаратом для полетов).

Перемещение двигателя производится за счет силы тяги, называемой реактивной, которая возникает при превращении энергии разного рода веществ или топливв (электроэнергии, химической, ядерной). Реактивная сила отдающих свою энергию истекающих струй и образующаяся на выходном сопле устройства, способна приводить в движение весь аппарат без помощи посторонних узлов и механизмов.

Саму теорию практического применения энергии реактивной силы, которая бы справилась с притяжением Земли, предложил ученый-инженер из России Циолковский К.Э. Однако ученому понадобилось достаточно много времени, в том числе политической смены власти, чтобы его научные исследования были приняты в практическом использовании.


Рисунок 1 – Общий снимок реактивного двигателя, который устанавливается в самолетах

Принцип работы реактивного двигателя

В общем виде принцип работы реактивного двигателя практически аналогичен принципу работы ядерного двигателя. Для первого применяется химическая движущая энергия, для вотрого же — энергия ядерных элементов.

Многие из нас, особенно мужская половина населения (на службе в армии, на охоте, в тире, на полигоне), стреляли из огнестрельного оружия и, соответственно, чувствовали на себе действие реактивной силы в виде отдачи. Этот же принцип, основанный на законе сохранения импульса, применяется в реактивных двигательных установках, в которых главным двигательным веществом является топливо.

Если рассмотреть вариант реактивного двигателя, функционирующего на керосиновом топливе, то в смесительном отсеке агрегата, где топливо смешивается с окислителем и происходит горение состав, выпускается огромнейшая энергия в виде тепла и мгновенного повышения давления в 10-20-30 и более раз выше атмосферного.

При постоянном поступлении топлива и окислителя (воздуха, жидкого кислорода, азотной кислоты) выходная кинетическая энергия рабочей отработанной смеси будет обладать высоким движущим импульсом. И истекающие струи через «Лавальское» сопло агрегата в окружающее пространство будут приводить в движение установку за счет выталкивающего момента.


Рисунок 2 – Иллюстрационное изображение работы реактивного двигателя

Как работает реактивный двигатель


Рисунок 3 – Схема работы реактивного двигателя

Воздух из окружающего пространства поступает на всас вентиляторов, которые подают его далее лопатки вращающегося с очень высокой скоростью турбокомпрессора. При этом поступающий воздух выполняет 2 функции:

  • окислитель для сгорания топлива;
  • охладитель агрегата.

В лопаточном аппарате турбокомпрессора воздух крепко уплотняется и под высоким давлением (от 3 МПа) подается в топливную смесительную камеру реактивного двигателя. Из рисунка 3 видно, что камера сгорания устроена таким образом, что смешение воздуха производится в несколько ступеней — на входе и в самой камере. Сюда же подводится топливо.

Читайте также:  Из какого металла сделан двигатель москвич 412

Хорошо перемешанная и в достаточном количестве обогащенная смесь воспламеняется, и в результате сгорания образуется тепловая энергия с выделением огромного объема газов. Последние приводят во вращение турбину горячей части двигателя, привод которой служит приводом турбокомпрессора.

В отдельных моделях реактивных двигателей турбины на выходе не монтируются. По большей части данное исполнение применяется в конструкции и принципе работы ракетного двигателя, где продукты сгорания после камеры попадают на выходные сопла.

Покидая горячую ступень, газы во всех реактивных аппаратах проходят через сопла. Эти элементы отличаются по своим конструкциям для разных моделей реактивных агрегатов и представляют собой «трубу», которая сначала сужается, а к выходу газов увеличивается в диаметре. За счет такой конструкции отработавшие газы увеличивают свою скорость до сверхзвука и образуют реактивную силу.

Температура горения в «сердце» реактивного агрегата достигает 2500°С, поэтому конструктивно требовательны в постоянстве охлаждения.

Устройство реактивного двигателя

С первого взгляда кажется устройство конструкции реактивной установки достаточно простым, однако характеристики использования топлива и его сгорания требуют применения высокопрочных материалов.

На рисунке 4 изображено устройство реактивного двигателя.


Рисунок 4 — Устройство реактивного двигателя

Из рисунка 4 видно, что на входе в аппарат установлен вентилятор всасывающий воздух в двигатель. Вентилятор состоит из мощных и объемных по размеру лопастей, которые, как правило, изготавливаются из титана. Далее вслед за вентилятором установлен многоступенчатый турбокомпрессор для подачи воздуха непосредственно в камеру, где происходит сгорание рабочего тела.

После воспламенения и сгорания поток реактивных газов направляется на рабочие лопатки турбоагрегата, чем и приводят его во вращение. На валу турбины горячей ступени имеется жесткая связь с компрессором, который вращается от работы турбины.

Отработанный газовый вихрь через сопла набирает реактивную скорость и покидает полость аппарата. Для предотвращения перегрева и расплавки на сопла подводится охлаждающий воздух от турбокомпрессора по специальным каналам в корпусе двигателя.

Разновидности реактивных двигателей

Существует несколько реактивных двигателей отличающихся по своему принципу работы и подобию. Так, принцип работы ядерного двигателя, в основу которого положена синтезная реакция разложения химического элемента, к примеру — урана.

Данный элемент помещается в реактор. Туда же подводится при помощи турбонасосов рабочее вещество. Распылительными форсунками производится его рассеивание по рабочей камере, в которой происходит контакт с химическим ураном. В результате выделяется энергия большой силы, которая и является движущей.

Не смотря на всю конфиденциальность и секретность информации о ядерном вооружении стран во всем мире, самую большую опасность представляет крылатая ракета, работающая на ядерном топливе.

Системы противовоздушной обороны настолько совершенны, что обмануть простыми полетами и маневрами уже не так-то просто. В этом случае и выступает на передний план ядерный двигатель. Увы, принцип работы ядерного двигателя для крылатой ракеты недоступен и, вряд ли, когда-нибудь будет раскрыт для общественности.

Читайте также:  Общая характеристика дизельного двигателя

Источник

Глава 5 рабочий процесс и характеристики турбовальных, турбовинтовых и турбовинтовентиляторных двигателей

5.1. Удельные параметры тВаД и их зависимость от

Параметров рабочего процесса

У турбовальных двигателей (рис. 5.1) реализуется термодинамический цикл Брайтона, и работа цикла

Lц =Lе +. (5.1)

У ТВаД, применяемых на вертолетах, реактивная тяга не используется в качестве движущей силы. Скорость истечения газа из сопла ссу них стремятся иметь как можно меньшей. Мала у них и скорость полетаV. Поэтому у этих двигателей практическиLц =Lе. В этом случае мощность на валу двигателя выражается формулой

Основными удельными параметрами ТВаД служат удельная мощность Nе.уд и удельный расход Се топлива.

Рис. 5.1. Схемы турбовальных ГТД со свободной турбиной

с одновальным а) и двухвальным (б) газогенераторами

Удельная мощность равна:

Ne.уд ==LеLц. (5.3)

Внутренний КПД термодинамического цикла ТВаД, как и для ГТД прямой реакции, определяется из соотношения

вн ==. (5.4)

Удельный расход топлива равен

Сe ===. (5.5)

Отсюда следует, что экономичность турбовальных двигателей полностью определяется их внутренним КПД, характеризующим совершенство двигателя как тепловой машины.

Формулы (5.1)…(5.5) с достаточной точностью применимы также для расчета удельных параметров ТВД и ТВВД, т.к. для этих двигателей доля тяги, создаваемой за счет истечения газа из реактивного сопла, мала.

Параметрами их рабочего процесса являются степень повышения давления  = и степень подогрева воздуха=Т*г / Тн. Они определяют эффективность термодинамического цикла этих двигателей.

Рассмотрим влияние параметров рабочего процесса на удельные параметры ТВаД.

Зависимости Lц и вн от  и  для рассматриваемых двигателей остаются такими же, как для ТРД и ТРДД.

Качественный характер протекания зависимостей Ne.уд и Сe от  (и соответственно от при известной величиневх) при =const и заданных условиях полета для ТВаД изображен на рис. 5.2 а. Отличие от ТРД и ТРДД состоит в том, что значение величины эк у ТВаД соответствует условию максимума вн и, следовательно, значительно ниже, чем у ТРДД и особенно у ТРД.

Качественный характер зависимостей величин Ne.уд и Се от  (и соответственно от ) при = const и заданных условиях полета приведен на рис. 5.2 б (сплошные линии). Величина Nе.уд повторяет зависимость работы цикла от . Как видно, Nе.уд увеличивается при повышении , а следовательно, и , более интенсивно, чемРуд у ТРД , что объясняется снижением у них с ростом  тягового КПД.

Рис. 5.2. Характер зависимостей Nе.уд, Се и ηвн от и Δ

для заданного режима полета

Внутренний КПД с ростом  при  = const увеличивается (рис. 5.2 в), поэтому величина Се , которая у ТВаД изменяется обратно пропорционально вн, с ростом уменьшается. Это также является отличительной особенностью ТВаД: у них нет эк. Чем выше  и соответственно , тем при прочих равных условиях ниже удельный расход топлива. Это справедливо в предположении, что с ростом не происходит значительного увеличения расхода воздуха на охлаждение турбины.

Читайте также:  Как увеличить кпд автомобильного двигателя

Источник

Циклы реактивных двигателей. Воздушно-реактивный двигатель с турбокомпрессором.

Реактивный двигатель представляет собой устройство, в котором химическая энергия топлива преобразуется в кинетическую энергию струи рабочего вещества (газа), расширяющегося в соплах. Эта струя создает тягу за счет реактивного действия рабочего тела, вытекающего из двигателя в сторону, противоположную направлению движения летательного аппарата.

Реактивные двигатели подразделяются на две основные категории — ракетные двигатели и воздушно-реактивные двигатели (ВРД).

Ракета несет на борту запас как горючего, так и окислителя, необходимого для сгорания топлива (жидкий кислород, озон, пероксид водорода, азотная кислота и др.). В отличие от них воздушно-реактивные двигатели несут на борту только запас горючего, а в качестве окислителя используется кислород атмосферного воздуха. Следовательно, ВРД пригодны для работы только в атмосфере Земли, тогда как ракетные двигатели могут работать как в атмосфере, так и в космическом пространстве.

По принципу действия ВРД делятся на компрессорные и бескомпрессорные. Схема с турбокомпрессором представлена на рисунке 1. В турбокомпрессорном воздушно-реактивном двигателе (ТРД) жидкое горючее, подаваемое из топливных баков, сгорает в камере сгорания 3, и затем продукты сгорания, расширившись в сопле 5, выбрасываются во внешнюю среду. Окислителем служит кислород воздуха. Для того чтобы повысить КПД двигателя, применяют предварительное сжатие воздуха. Воздух, засасываемый из атмосферы через диффузор 1, сжимается осевым или центробежным компрессором 2 и только после этого поступает в камеру сгорания. Привод компрессора осуществляется от специальной газовой турбины 4, на вращение которой расходуется часть располагаемого перепала температур продуктов сгорания (компрессор с приводом от газовой турбины называется турбокомпрессором). Пройдя через газовую турбину, продукты сгорания расширяются в сопле.

Из сказанного следует, что цикл ТРД осуществляется следующим образом (р, v-диаграмма на рисунке 2): сжатие воздуха в турбокомпрессоре 1) от атмосферного давления p1 до давления p2 происходит по адиабате 1-2. Затем к рабочему телу подводится теплота q1, выделяющаяся при сгорании топлива; этот процесс происходит при постоянном давлении (изобара 2-3). Расширение рабочего тела (воздух + продукты сгорания) в газовой турбине и затем в реактивном сопле 5 двигателя осуществляется по адиабате 3-4 (от точки 3 до точки b — отдача работы в газовой турбине, а от точки b до точки 4 — ускорение потока в сопле). Цикл замыкается изобарой 4-1 при давлении, равном атмосферному. Из сказанного следует, что цикл ТРД принципиально ничем не отличается от цикла газотурбинной установки со сгоранием при постоянном давлении, рассмотренного ранее.

Турбокомпрессорный воздушно-реактивный двигатель в настоящее время является основным типом двигателя для скоростных самолетов.

Источник

Оцените статью