Система резервного запуска двигателя

Система резервного запуска двигателя

Группа: Участники форума
Сообщений: 89
Регистрация: 22.3.2011
Из: Москва
Пользователь №: 99557

Приветствую, уважаемые знатоки!

Вопрос мой относится больше к электрооборудованию, но пишу я его здесь, так как данная ветка более посещаема. Посему прошу уважаемых модераторов его не выпиливать.

Сетевой насос (резервный отбросим) отопления на котельной управляются через ПЧ. Уже усё смонтировано и благополучно, как мне известно, работает. Но Заказчик, в лице умудрённого опытом главного инженера, пожелал иметь резервную, так сказать аварийную, систему запуска данного насоса на случай внезапной кончины частотника (что бы оператор сам мог пустить насос).
Как это можно максимально просто реализовать?
У меня пока две мысли:
1. Прямой пуск на закрытую задвижку (P = 55 кВт, Iн = 93,8, Iпуск

900 А). Автомат на насос стоит 125 А, характеристика «D» — выбивать не должен. Смущает только требование СНиП II-35-76, п. 14.9 «. при этом необходимо выполнять соответствующую блокировку электродвигателей насоса и задвижки.» — задвижка естественно ручная, можно ли этот пункт оставить на страх и риск оператора, что бы сам следил за положением данной задвижки при пуске. И ещё интересно в данном варианте какую просадку напряжения может дать такой насос при пуске, не поотключаются ли другие электроприёмники. Или, как говорится, практика покажет?
2. Пуск «Y/D». Здесь смущает необходимость перекоммутации обмоток двигателя — при аварии оператор не полезет в клеммную коробку двигателя снимать перемычки (двигатель скоммутирован в «D»). Получается, что данная перекоммутация должна так же управляться и блокироваться кнопочками, назначение которых понятно оператору. Назревает нехилое количество контакторов, дополнительных кабелей и прочего, что на мой взгляд не есть хорошо. Или что-то я не так понимаю?

Источник

Устройство и принцип работы системы запуска двигателя

Система запуска двигателя обеспечивает первоначальное проворачивание коленчатого вала ДВС, благодаря чему в цилиндрах происходит воспламенение топливовоздушной смеси и мотор начинает работать самостоятельно. В эту систему входят несколько ключевых элементов и узлов, работу которых мы рассмотрим далее в статье.

Что представляет собой

В современных автомобилях реализована электрическая система пуска двигателя. Также ее часто называют стартерной системой пуска. Одновременно с вращением коленвала в работу включается система ГРМ, зажигания и топливоподачи. Происходит сгорание топливовоздушной смеси в камерах сгорания и поршни проворачивают коленвал. После достижения определенных оборотов коленчатого вала двигатель начинает работать самостоятельно, по инерции.

Запуск двигателя

Чтобы запустить двигатель, нужно достичь определенной частоты вращения коленчатого вала. Для разных типов двигателей это значение отличается. Для бензинового мотора минимально необходимо 40-70 об/мин, для дизельного – 100-200 об/мин.

На начальном этапе автомобилестроения активно использовалась механическая система пуска с помощью заводной рукоятки. Это было ненадежно и неудобно. Сейчас от таких решений отказались в пользу электрической системы запуска.

Устройство системы запуска двигателя

В систему пуска двигателя входят следующие ключевые элементы:

  • механизмы управления (замок зажигания, дистанционный запуск, система Старт-Стоп);
  • аккумуляторная батарея;
  • стартер;
  • провода определенного сечения.

Схема запуска двигателя

Ключевым элементом системы является стартер, который, в свою очередь, питается от аккумуляторной батареи. Это электродвигатель постоянного тока. Он создает крутящий момент, который передается маховику и коленчатому валу.

Как работает запуск двигателя

После поворота ключа в замке зажигания в положение «запуск» замыкается электрическая цепь. Ток по плюсовой цепи от аккумулятора поступает на обмотку тягового реле стартера. Затем по обмотке возбуждения ток проходит к плюсовой щетке, затем по обмотке якоря на минусовую щетку. Так срабатывает тяговое реле. Подвижный сердечник втягивается и замыкает силовые пятаки. При движении сердечника выдвигается вилка, которая толкает приводной механизм (бендикс).

Читайте также:  Что такое периодический прогрев двигателя

После замыкания силовых пятаков от аккумулятора подается пусковой ток по плюсовому проводу на статор, щетки и ротор (якорь) стартера. Вокруг обмоток возникает магнитное поле, которое приводит в движение якорь. Таким образом электрическая энергия от аккумулятора преобразуется в механическую энергию.

Работа выключенного и включенного стартера

Как уже было сказано, вилка, во время движения втягивающего реле, выталкивает бендикс к венцу маховика. Так происходит зацепление. Якорь вращается и приводит в движение маховик, который передает это движение коленчатому валу. После запуска двигателя маховик раскручивается до больших оборотов. Чтобы не повредить стартер, срабатывает обгонная муфта бендикса. При определенной частоте бендикс вращается независимо от якоря.

После запуска двигателя и отключения зажигания от положения «запуск» бендикс принимает исходное положение, а двигатель работает самостоятельно.

Особенности работы аккумуляторной батареи

От состояния и мощности аккумулятора будет зависеть успешный запуск двигателя. Многие знают, что для АКБ важны такие показатели, как емкость и ток холодной прокрутки. Эти параметры указываются на маркировке, например, 60/450А. Емкость измеряется в Ампер-часах. Аккумулятор имеет малое внутренне сопротивление, поэтому он может кратковременно отдавать большие токи, в несколько раз превышающие его емкость. Указанный ток холодной прокрутки 450А, но при соблюдении определенных условий: +18С° в течение не более 10 секунд.

Однако, подаваемый ток на стартер все равно будет меньше указанных значений, так как не учитывается сопротивление самого стартера и силовых проводов. Этот ток и называется пусковым током.

Справка. Внутреннее сопротивление аккумулятора в среднем составляет 2-9 мОм. Сопротивление стартера бензинового мотора в среднем 20-30 мОм. Как видно, для правильной работы необходимо, чтобы сопротивление стартера и проводов в несколько раз превышало сопротивление аккумулятора, иначе внутреннее напряжение аккумулятора при пуске будет проседать ниже 7-9 вольт, а этого допускать нельзя. В момент подачи тока напряжение исправного АКБ проседает в среднем до 10,8В в течение нескольких секунд, а затем вновь восстанавливается до 12В или чуть выше.

Аккумулятор отдает пусковой ток на стартер в течение 5-10 секунд. Затем нужно сделать паузу 5-10 секунд, чтобы аккумулятор «набрался сил».

Если после попытки запуска напряжение в бортовой сети резко падает или стартер прокручивается наполовину, то это свидетельствует о глубоком разряде АКБ. Если стартер выдает характерные щелчки, то аккумулятор окончательно сел. Среди других причин может быть поломка стартера.

Сила тока при старте

Стартеры для бензинового и дизельного мотора будут отличаться по мощности. Для бензиновых ДВС используются стартеры мощностью 0,8-1,4 кВт, для дизельных – 2 кВт и выше. Что это значит? Это значит, что стартеру с дизельным мотором нужно больше мощности, чтобы прокрутить коленвал на сжатие. Стартер мощностью 1 кВт потребляет 80А, 2 кВт потребляет 160А. Больше всего энергии уходит на начальную прокрутку коленчатого вала.

Среднее значение пускового тока для бензинового двигателя – 255А для успешной прокрутки коленвала, но это с учетом плюсовой температуры 18С° или выше. При минусовой температуре стартеру нужно крутить коленвал в загустевшем масле, что повышает сопротивление.

Особенности запуска двигателя в зимних условиях

В зимнее время бывает трудно запустить двигатель. Масло густеет, а значит провернуть его труднее. Также часто подводит аккумулятор.

При минусовой температуре внутреннее сопротивление аккумулятора повышается, батарея садится быстрее, также неохотно отдает нужный пусковой ток. Для успешного пуска двигателя зимой АКБ должна быть полностью заряжена и не должна быть замерзшей. Дополнительно нужно следить за контактами на клеммах.

Вот несколько советов, которые помогут запустить двигатель зимой:

  1. Перед включением стартера на холодную включите дальний свет на несколько секунд. Это запустит химические процессы в батарее, так сказать, «разбудит» аккумулятор.
  2. Не крутите стартер больше 10 секунд. Так батарея быстро садится, особенно на морозе.
  3. Выжмите полностью педаль сцепления, чтобы стартеру не нужно было крутить дополнительные шестерни в вязком трансмиссионном масле.
  4. Иногда могут помочь специальные аэрозоли или «стартерные жидкости», которые впрыскивают в воздухозаборник. При исправном состоянии мотор заведется.
Читайте также:  Двигателя зерноуборочных комбайнов технические характеристики

Тысячи водителей ежедневно заводят свои моторы и едут по делам. Начало движения возможно благодаря слаженной работе системы запуска двигателя. Зная ее устройство, можно не только запускать двигатель в самых разных условиях, но и подобрать нужные компоненты в соответствии с требованиями именно к вашему автомобилю.

Источник

Система гарантированного запуска ДВС. Подробное описание.

Системы гарантированного запуска ДВС «Titan Engine Start» призваны обеспечить надежный запуск двигателей внутреннего сгорания (ДВС) в тяжелых погодных условиях.

До настоящего момента подобные устройства применялись исключительно на военной технике и автомобилях специального назначения. Данные модули являются 100% российской разработкой и производятся в России.

Модули стационарно устанавливаются на транспортное средство и обеспечивают надежный запуск ДВС при разряженной АКБ (до 9В) и при низких температурах (до -40°С).

Применение модулей позволяет снизить требуемую емкость АКБ до 1,5 раза и продлить срок ее службы в 2-4 раза.

Помимо этого, модули способны обеспечивать импульсной энергией электрические лебедки, установленные на снегоболотоходы.

Модули имеют несколько вариантов подключения в систему питания:

— параллельное (буферное) подключение. При такой схеме подключения, модуль включается параллельно в цепь с АКБ транспортного средства, не затрагивая силовой кабель стартера. Данный вариант приемлем, когда АКБ не изношена и в состоянии поддерживать штатное напряжение. Основными преимуществами такого варианта являются простота установки и подключения, оптимальная цена и надежность (пуск ДВС в диапазоне температур от -40 до +65 градусов).

Эта схема подключения относится к модулям МСКА-54-16 и МСКА-108-16-К.

— гибридное подключение. В этом случае, модуль подключается последовательно к штатной АКБ и к клеммам стартера. Данный вариант обеспечивает наличие постоянного напряжения на клеммах стартера и надежный запуск ДВС при сильно изношенных, замерзших или разряженных АКБ.

Эта схема подключения относится к модулю МСКА-108/54-16-ПБ.

Для того, чтобы по этому же принципу подключить модули МСКА-54-16 и МСКА-108-16-К, требуется установка дополнительного оборудования — повышающего преобразователя МПН9/16/20И1. Данный преобразователь позволяет снять нагрузку от стартера с АКБ, увеличив ресурс аккумулятора и получив уверенный пуск при просадке АКБ с 12 до 9В! АКБ в этом случае НИКОГДА не будет участвовать в пуске мотора, который будет заводиться только от суперконденсаторного модуля. В таком случае модуль подключается по последовательной схеме подключения.

Источник

Асинхронный двигатель: пуск, резервирование, управление

FAT – промышленные системы гарантированного электроснабжения с функциями частотного регулирования и плавного пуска асинхронных электродвигателей.

Построение систем гарантированного электроснабжения

Для этого применяются системы, построенные на основе электронных преобразователей напряжения и аккумуляторной батареи, обозначаемые UPS (Uninterruptible Power System). Стандартный UPS, выполненный по технологии Online, обеспечивает бесперебойное питание потребителей переменным напряжением стабильной амплитуды и частоты, не зависящим от качества напряжения в электрической сети.

Стандартные UPS применяют для питания большинства потребителей, таких, как: компьютерные системы, аварийные источники освещения, устройства телекоммуникации, контроллеры КИПиА, контроллеры АСУ ТП и т. д. Однако существуют категории потребителей, требующих индивидуального подхода в решении вопроса гарантированного электроснабжения. Стандартные UPS допускают кратковременную перегрузку на выходе максимум до трех номинальных значений выходного тока. В частности, для запуска асинхронных двигателей, подключенных в качестве потребителей, такой перегрузочной способности стандартного UPS недостаточно, т. к. пусковые токи двигателей могут шестикратно превышать номинальный ток. Дополнительный фактор, что ток питания двигателя, получаемый от перегруженного UPS, не обладает синусоидальной формой, что может привести к нарушениям во время запуска, а также к полному отсутствию запуска. Проблему можно решить увеличением номинальной мощности UPS, но это приводит к удорожанию всей системы. Фирма APS Energia предлагает техническое решение для данной категории потребителей.

FAT – система гарантированного электроснабжения асинхронных электродвигателей

В промышленных системах различных отраслей в качестве одной из составляющих применяются приводные системы, которые должны бесперебойно вращаться электродвигателями, либо необходим старт двигателя в момент исчезновения напряжения в электрической сети. В качестве примера подобных приводных систем можно рассматривать:
• маслонасосы смазки подшипников турбогенераторов;
• механизмы турбогенераторов, поддерживающие вращения ротора после прекращения подачи пара в турбину;
• вентиляторы подачи выхлопных газов к дымоходам;
• мазутные насосы;
• циркуляционные насосы, водяные насосы, пополняющие котлы и т. п.

Читайте также:  Схема двигателя автомобиля опель кадет

Одним из вариантов решения проблемы гарантированного электроснабжения вышеупомянутых приводных систем является использование двигателей постоянного тока с электронными регуляторами и резервным питанием от аккумуляторных батарей. К сожалению, существующие недостатки двигателей постоянного тока исключают повсеместное применение этих систем. К этим недостаткам относятся:
• большие габариты, а также стоимость двигателя постоянного тока по отношению к асинхронному двигателю;
• ограниченный срок службы из‑за износа коллектора и потребность в обслуживании;
• искрение коллектора.

Последний недостаток особенно нужно брать во внимание, когда двигатель используется в приводе масляных насосов или работает вблизи или внутри взрывоопасных производственных зон.

Этих недостатков лишена система, построенная на основе асинхронного двигателя и системы FAT, схема которой изображена на рисунке 2a.

«>

В нормальном состоянии двигатель запитан от электрической сети через выпрямитель и преобразователь DC/AC. При исчезновении напряжения в электрической сети двигатель через этот же преобразователь бесперебойно переходит на питание от аккумуляторной батареи. Кроме того, при включении FAT обеспечивает плавный пуск двигателя за счет автоматического регулирования частоты напряжения питания двигателя, в результате чего отсутствуют пусковые токи и перегрузка силовых цепей на выходе FAT.

Представленная на рисунке 2а схема является стандартной схемой системы FAT. По желанию заказчика APS Energia может расширить функции системы, как показано на рисунках 2б и 2в.

Данная система обеспечивает гарантированное питание дополнительных потребителей за счет применения второго инвертора.

В данной системе возможность регулирования частоты напряжения, питающего двигатель, позволяет регулировать производительность насоса. Это обеспечивает стабилизацию давления или расхода в системе, к которой подключен насос.

системы FAT производства APS Energia
В качестве двигателя приводной системы используется очень простой и дешевый асинхронный электродвигатель.

В сети отсутствуют броски тока, потребляемого системой FAT при пуске двигателя. Рисунок 4б представляет запуск двигателя насоса, запитанного от системы FAT. Пусковой ток двигателя равен номинальному току, но при этом двигатель сразу после пуска развивает максимальный момент на валу. Данный режим работы достигается за счет автоматического регулирования частоты и напряжения питания на выходе FAT. Это значительно облегчает запуск любого двигателя, а особенно тяжелый запуск двигателя, например запуск мазутного насоса зимой. Для сравнения, момент на валу и протекание тока в двигателе, запитанном от электрической сети или от стандартного UPS, представлены на рисунке 4а.

Путем подбора емкости аккумуляторной батареи в системе FAT обеспечивается требуемое время работы потребителей во время аварии в сети.

Путем введения в систему FAT обратной связи от приводной системы, например сигналов от датчиков давления или расхода трубопровода, можно легко регулировать параметры установок, в которых работают насосы, приводом которых являются асинхронные двигатели (регулируемая частота выходного напряжения FAT).

Путем установки дополнительных элементов в систему FAT:
• появляется возможность запитать дополнительных потребителей стабильным переменным напряжением;
• после запуска и синхронизации с напряжением сети двигатель, питающийся от FAT, может быть переключен на питание от электрической сети. При исчезновении напряжения в сети FAT выполнит обратное переключение и обеспечит работу двигателя от аккумуляторных батарей. Данное решение аналогично функции By-pass, используемой в стандартном UPS.

Путем установки дополнительного программатора система FAT может обеспечить, при больших мощностях и стартовых нагрузках, запуск двигателя в запрограммированном под его индивидуальные параметры режиме.
ООО «АПС ЭНЕРГИЯ РУС»
620144, г. Екатеринбург,
Московская ул., д. 195, оф. 901
Тел. (343) 344‑999-1 (2, 3)
Факс (343) 344‑999-0
E-mail: aps@apsenergia.ru, www.apsenergia.ru

СРО, Мощность, Напряжение , Сети , Турбины, Энергоснабжение, Кабельная арматура, Провод

Источник

Adblock
detector