Схема управления асинхронным двигателями с короткозамкнутым ротором

Содержание
  1. Схемы управления асинхронным двигателем в формате dwg
  2. Схема управления нереверсивным двигателем – «прямой пуск»
  3. Схема реверсивного управления двигателем
  4. Схема управления двигателем «звезда-треугольник»
  5. Трехфазный асинхронный двигатель
  6. Трехфазный асинхронный двигатель с короткозамкнутым ротором
  7. Конструкция асинхронного электродвигателя
  8. Принцип работы. Вращающееся магнитное поле
  9. Концепция вращающегося магнитного поля
  10. Действие вращающегося магнитного поля на замкнутый виток
  11. Короткозамкнутый ротор асинхронного двигателя
  12. Скольжение асинхронного двигателя. Скорость вращения ротора
  13. Звезда и треугольник
  14. Обозначение выводов статора трехфазного электродвигателя
  15. Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента
  16. Управление асинхронным двигателем
  17. Прямое подключение к сети питания
  18. Нереверсивная схема
  19. Реверсивная схема
  20. Плавный пуск асинхронного электродвигателя
  21. Частотное управление асинхронным электродвигателем
  22. Трехфазный асинхронный двигатель с фазным ротором
  23. Конструкция АДФР
  24. Фазный ротор
  25. Статор АДФР
  26. Обозначение выводов вторичных обмоток трехфазного АДФР
  27. Пуск АДФР

Схемы управления асинхронным двигателем в формате dwg

В данной статье речь пойдет о схемах управления асинхронным двигателем (АД). В настоящее время существуют три наиболее часто используемые схемы управления асинхронным двигателем с короткозамкнутым ротором:

  • схема управления нереверсивным двигателем – «прямой пуск»;
  • схема реверсивного управления двигателем;
  • схема управления двигателем «звезда-треугольник».

В конце данной статьи, вы сможете скачать данные схемы выполненные в программе AutoCad в формате dwg.

Схема управления нереверсивным двигателем – «прямой пуск»

Данная схема состоит из следующих устройств:

    автоматический трехполюсный выключатель – QF1 (защита цепей питания двигателя

380В);

  • линейный контактор – КМ1;
  • тепловое реле – КК1 (защита от перегрузки двигателя);
  • предохранитель – FU1 (защита цепей управления

    220В);

  • кнопки «СТОП» и «ПУСК» с самовозвратом – SB1 и SB2;
  • сигнальные лампы — HL1 и HL2.
  • При нажатии кнопки SB2 «ПУСК» подается напряжение на катушку контактора КМ1. Контактор срабатывает и своими силовыми контактами подключает к сети 380В асинхронный двигатель. При этом своими контактами 14-13 шунтирует кнопку SB2, делается это для того, чтобы катушка контактора была постоянно под напряжением и он не отключался при отпускании кнопки SB2.

    Отключение двигателя происходит нажатием кнопки SB1 «СТОП». Для защиты от перегрузки двигателя применяется тепловое реле КК1, в случае перегрузки двигателя, контакты 96-95 реле КК1 размыкаются снимая напряжение с катушки контактора КМ1.

    Схема реверсивного управления двигателем

    Отличие данной схемы от предыдущей схемы в том, что изменяя порядок чередования фаз на статоре двигателя, мы изменяем направление вращения ротора двигателя «Вправо» — «Влево».

    При нажатии кнопки SB2 «Открыть» (в данном примере схема используется для управления реверсивной задвижкой) срабатывает контактор КМ1 и ротор двигателя вращается в одну сторону при этом задвижка открывается. В этом случае порядок чередования – А, В, С.

    Что бы ротор двигателя вращался в другую сторону, нужно сначала нажать кнопку SB1 «СТОП» и лишь потом нажать кнопку SB3 «Закрыть», в результате сработает контактор КМ2 и ротор двигателя вращается в обратную сторону при этом задвижка закрывается. Порядок чередования фаз – С, В, А.

    Во избежание короткого замыкания при одновременном нажатии кнопок SB2 и SB3 используются нормально-закрытые контакты 22-21 контакторов КМ1 и КМ2 и таким образом исключается возможность включения одного контактора пока не обесточится другой.

    Схема управления двигателем «звезда-треугольник»

    Данная схема применяется когда нужно уменьшить пусковой ток двигателя, в основном она используется для двигателей большой мощности.

    В момент пуска, обмотки статора двигателя соединены в «звезду», после того как двигатель разогнался, происходит переключение обмоток статора со «звезды» на «треугольник».

    Подробно об изменении мощности при схеме соединении двигателя звезда-треугольник рассмотрено в статье: «Расчет мощности двигателя при схеме соединения звезда-треугольник».

    При нажатии кнопки SB2 «ПУСК» подается напряжение на катушку реле времени КТ1, контактора КМ1 и промежуточного реле KL1. Реле KL1 добавлено в схему в связи с тем, что у реле времени есть только одна группа блок-контактов, если же у Вашего реле времени есть дополнительная группа блок-контактов, реле KL1 – не используется. Не много забегая вперед, в архиве вы сможете найти схему управления двигателем «звезда-треугольник» без промежуточного реле KL1.

    После того как сработало реле KL1 мгновенно замыкаются его контакты 11-14 и через нормально закрытые контакты 22-21 контактора КМ2 срабатывает контактор КМ3. При этом контакты 21-22 реле KL1 размыкаются, тем самым выполняется блокировка от одновременного включения контакторов КМ3 и КМ2.

    Когда контактор КМ3 сработал, он своими силовыми контактами соединяет обмотку статора двигателя «звездой».

    После того как двигатель разогнался при пониженном напряжении, контакты реле времени КТ1 11-12 разомкнутся, тем самым сняв напряжение с катушки реле KL1, в это время контакты реле KL1 11-14 размыкают цепь включения контактора КМ3, а в цепи включения контактора КМ2 замыкаются, и если контакты 21-22 контактора КМ3 замкнуты, то включается контактор КМ2.

    Читайте также:  Какие двигателя ставятся на мотоблоки

    После этого контактор КМ2 своими силовыми контактами соединяет обмотку статора двигателя «треугольником».

    На этом процесс подключения двигателя к сети

    380 В – заканчивается.

    В архиве вы сможете найти следующие схемы в формате dwg:

    • схема управления нереверсивным двигателем – «прямой пуск»
    • схема реверсивного управления двигателем
    • схема управления двигателем «звезда-треугольник» с реле времени и промежуточным реле
    • схема управления двигателем «звезда-треугольник» с реле времени

    Источник

    Трехфазный асинхронный двигатель

    Трехфазный асинхронный двигатель с короткозамкнутым ротором

    Конструкция асинхронного электродвигателя

    Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

    Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

    Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

    Принцип работы. Вращающееся магнитное поле

    Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

    Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

    Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

    ,

    • где n1 – частота вращения магнитного поля статора, об/мин,
    • f1 – частота переменного тока, Гц,
    • p – число пар полюсов

    Концепция вращающегося магнитного поля

    Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

    Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

    Действие вращающегося магнитного поля на замкнутый виток

    Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

    Влияние вращающегося магнитного поля на замкнутый проводник с током

    Короткозамкнутый ротор асинхронного двигателя

    По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

    Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

    Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

    Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

    Скольжение асинхронного двигателя. Скорость вращения ротора

    Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

    Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2 Трехфазный ток (разница фаз 120°)

    Звезда и треугольник

    Трехфазная обмотка статора электродвигателя соединяется по схеме «звезда» или «треугольник» в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

    Фазное напряжение — разница потенциалов между началом и концом одной фазы. Другое определение для соединения «звезда»: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы «треугольник» отсутствует нейтраль).

    Читайте также:  От чего зависит частота вращения якоря у двигателя постоянного тока

    Линейное напряжение — разность потенциалов между двумя линейными проводами (между фазами).

    Звезда Треугольник Обозначение
    Uл, Uф — линейное и фазовое напряжение, В,
    Iл, Iф — линейный и фазовый ток, А,
    S — полная мощность, Вт
    P — активная мощность, Вт

    S = 1,73∙380∙1 = 658 Вт.

    Теперь изменим схему соединения на «треугольник», линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы «треугольник» будет в три раза больше линейного тока схемы «звезда». А следовательно и потребляемая мощность будет в 3 раза больше:

    S = 1,73∙380∙3 = 1975 Вт.

    Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме «звезда», подключение данного электродвигателя по схеме «треугольник» может привести к его поломке.

    Если в нормальном режиме электродвигатель подключен по схеме «треугольник», то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

    Подключение электродвигателя по схеме звезда и треугольник

    Обозначение выводов статора трехфазного электродвигателя

    Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
    Начало Конец
    Открытая схема (число выводов 6)
    первая фаза U1 U2
    вторая фаза V1 V2
    третья фаза W1 W2
    Соединение в звезду (число выводов 3 или 4)
    первая фаза U
    вторая фаза V
    третья фаза W
    точка звезды (нулевая точка) N
    Соединение в треугольник (число выводов 3)
    первый вывод U
    второй вывод V
    третий вывод W
    Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
    Начало Конец
    Открытая схема (число выводов 6)
    первая фаза C1 C4
    вторая фаза C2 C5
    третья фаза C3 C6
    Соединение звездой (число выводов 3 или 4)
    первая фаза C1
    вторая фаза C2
    третья фаза C3
    нулевая точка
    Соединение треугольником (число выводов 3)
    первый вывод C1
    второй вывод C2
    третий вывод C3

    Подключение трехфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего элемента

    Трехфазные асинхронные электродвигатели могут быть подключены к однофазной сети с помощью фазосдвигаюших элементов. При этом электродвигатель будет работать либо в режиме однофазного двигателя с пусковой обмоткой (рисунок а, б, г) либо в режиме конденсаторного двигателя с постоянно включенным рабочим конденсатором (рисунок в, д, е).

    Схемы подключения трехфазного асинхронного электродвигателя к однофазной сети

    Схемы приведенные на рисунке «а», «б», «д» применяются, когда выведены все шесть концов обмотки. Электродвигатели с соединением обмоток согласно схемам «а», «б», «г» практически равноценны двигателям, которые спроектированы как однофазные электродвигатели с пусковой обмоткой. Номинальная мощность при этом состовляет 40-50% от мощности в трехфазном режиме, а при работе с рабочим конденсатором 75-80%.

    Емкость рабочего конденсатора при частоте тока 50 Гц для схем «в», «д», «е» примерно рассчитывается соответственно по формулам:

    • ,где Cраб — емкость рабочего конденсатора, мкФ,
    • Iном – номинальный (фазный) ток статора трехфазного двигателя, А,
    • U1 – напряжение однофазной сети, В.

    Управление асинхронным двигателем

      Способы подключения асинхронного электродвигателя к сети питания:
    • прямое подключение к сети питания
    • подключение от устройства плавного пуска
    • подключение от преобразователя частоты

    Варианты подключения асинхронного электродвигателя с помощью магнитного пускателя (слева), устройства плавного пуска (посеридине) и частотного преобразователя (справа). Схемы представлены в упрощенном виде.
    FU1-FU9 — плавкие предохранители, KK1 — тепловое реле, KM1 — магнитный пускатель, L1-L3 — контакты для подключения к сети трехфазного переменного тока, M1-M3 — асинхронные электродвигатели, QF1-QF3 — автоматические выключатели, UZ1 — устройство плавного пуска, UZ2 — преобразователь частоты

    Прямое подключение к сети питания

    Использование магнитных пускателей позволяет управлять асинхронными электродвигателями путем непосредственного подключения двигателя к сети переменного тока.

    С помощью магнитных пускателей можно реализовать схему:

    • нереверсивного пуска: пуск и остановка;
    • реверсивного пуска: пуск, остановка и реверс.

    Использование теплового реле позволяет осуществить защиту электродвигателя от величин тока намного превышающих номинальное значение.

    Нереверсивная схема

    Реверсивная схема

    Недостатком прямой коммутации обмоток асинхронного электродвигателя с сетью является наличие больших пусковых токов, во время запуска электродвигателя.

    Плавный пуск асинхронного электродвигателя

    В задачах, где не требуется регулировка скорости электродвигателя во время работы для уменьшения пусковых токов используется устройство плавного пуска.

    Устройство плавного пуска защищает асинхронный электродвигатель от повреждений вызванных резким увеличением потребляемой энергии во время пуска путем ограничения пусковых токов. Устройство плавного пуска позволяет обеспечить плавный разгон и торможение асинхронного электродвигателя.

    Устройство плавного пуска дешевле и компактнее частотного преобразователе. Применяется там, где регулировка скорости вращения и момента требуется только при запуске.

    Читайте также:  Как понять двигатель tsi

    Частотное управление асинхронным электродвигателем

    Для регулирования скорости вращения и момента асинхронного двигателя используют частотный преобразователь. Принцип действия частотного преобразователя основан на изменении частоты и напряжения переменного тока.

      Использование частотного преобразователя позволяет:
    • уменьшить энергопротребление электродвигателя;
    • управлять скоростью вращения электродвигателя (плавный запуск и остановка, регулировка скорости во время работы);
    • избежать перегрузок электродвигателя и тем самым увеличить его срок службы.

    Функциональная схема частотно-регулируемого привода

      В зависимости от функционала частотные преобразователи реализуют следующие методы регулирования асинхронным электродвигателем:
    • скалярное управление;
    • векторное управление.

    Скалярное управление является простым и дешевым в реализации, но имеет следующие недостатки — медленный отклик на изменение нагрузки и небольшой диапазон регулирования. Поэтому скалярное управление обычно используется в задачах, где нагрузка либо постоянна, либо изменяется по известному закону (например, управление вентиляторами).

    Скалярное управление асинхронным двигателем с датчиком скорости

    Векторное управление используется в задачах, где требуется независимо управлять скоростью и моментом электродвигателя (например, лифт), что, в частности, позволяет поддерживать постоянную скорость вращения при изменяющемся моменте нагрузки. При этом векторное управление является самым эффективным управлением с точки зрения КПД и увеличения времени работы электродвигателя.

    Среди векторных методов управления асинхронными электродвигателями наиболее широкое применение получили: полеориентированное управление и прямое управление моментом.

    Полеориентированное управления асинхронным электродвигателем по датчику положения ротора

    Полеориентированное управление позволяет плавно и точно управлять параметрами движения (скоростью и моментом), но при этом для его реализации требуется информация о направлениии вектора потокосцепления ротора двигателя.

      По способу получения информации о положении потокосцепления ротора электродвигателя выделяют:
    • полеориентированное управление по датчику;
    • полеориентированное управление без датчика: положение потокосцепления ротора вычисляется математически на основе той информации, которая имеется в частотном преобразователе (напряжение питания, напряжения и токи статора, сопротивление и индуктивность обмоток статора и ротора, количество пар полюсов двигателя).

    Полеориентированное управления асинхронным электродвигателем без датчика положения ротора

    Прямое управление моментом имеет простую схему и высокую динамику работы, но при этом высокие пульсации момента и тока.

    Трехфазный асинхронный двигатель с фазным ротором

    До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

    Конструкция АДФР

    Фазный ротор

    Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

    Фазный ротор

    Статор АДФР

    Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

    Обозначение выводов вторичных обмоток трехфазного АДФР

    Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
    Начало Конец
    Открытая схема (число выводов 6)
    первая фаза K1 K2
    вторая фаза L1 L2
    третья фаза M1 M2
    Соединение в звезду (число выводов 3 или 4)
    первая фаза K
    вторая фаза L
    третья фаза M
    точка звезды (нулевая точка) Q
    Соединение в треугольник (число выводов 3)
    первый вывод K
    второй вывод L
    третий вывод M
    Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
    Соединение звездой (число выводов 3 или 4)
    первая фаза Р1
    вторая фаза Р2
    третья фаза Р3
    нулевая точка
    Соединение треугольником (число выводов 3)
    первый вывод Р1
    второй вывод Р2
    третий вывод Р3

    Пуск АДФР

    Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

    Применяются проволочные и жидкостные реостаты.

    Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

    Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов [3].

    Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

    При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

    Источник

    Adblock
    detector