Схема регулятора оборотов двигателя постоянного напряжения

Простейший регулятор оборотов электродвигателя своими руками

Изготавливая различные самоделки, приходится сталкиваться с рядом проблем и поиском их решений. Так и в случае с различными приспособлениями, которые имеют в своей конструкции коллекторный электродвигатель.

Очень часто нужно сделать так, чтобы двигатель имел регулируемые обороты. Для этих целей используется регулятор (контроллер) оборотов двигателя, который можно собрать своими руками.

Представленный ниже регулятор для электродвигателей позволяет не только обеспечить плавный пуск мотора и степень регулировки оборотов, но и защитить двигатель от перегрузок. Работать контроллер может не только от 220 Вольт, но и от пониженного напряжения, вплоть от 110 Вольт.

Характеристики самодельного контроллера

  • Диапазон напряжений (110-240 Вольт);
  • Возможность регулировки оборотов электродвигателя, от 9-99%;
  • Нагрузка, до 2,5 кВт;
  • Рабочая мощность, не более 300 Вт.

Самодельный регулятор оборотов для электродвигателя имеет низкий уровень шума, он позволяет осуществлять плавную стабилизацию оборотов и осуществлять мягкий пуск электродвигателя.

Ниже будет представлена схема регулятора оборотов для электродвигателя и принцип его работы.

Схема регулятора оборотов для электродвигателя

Чтобы собрать регулятор оборотов для двигателя потребуется генератор ШИМ импульсов и симистор для управления двигателем. Диод и резистор D1 и R1, позволяют снижать напряжение для питания двигателя, а конденсатор C1, призван обеспечивать фильтрацию тока на входе электроцепи.

Элементы P1, R5 и R3 — это делители напряжения с возможностью регулировки его значений. Резистор R2, который указан на схеме регулятора оборотов электродвигателя, позволяет синхронизировать внутренние блоки регулятора с основным симистором (ВТ139), на котором собственно и работает регулятор оборотов.

Ниже на рисунке можно увидеть наглядное расположение всех элементов регулятора оборотов для электродвигателей. Обязательно следует безопасно расположить элементы, так как работа регулятора осуществляется от опасного напряжения в 220 Вольт.

Мощность и нагрузка регулятора оборотов

К самодельному регулятору оборотов двигателя, сделанному по выше представленной схеме, можно подключить нагрузку не более 2 кВт. В случае увеличения нагрузки осуществляется замена главного симистора BT138/800. Если симистор устанавливается большего номинала, то его рекомендуется вынести за пределы общей платы, и обязательно установить на радиатор охлаждения, который можно сделать из куска алюминиевой полосы.

Примечательно то, что подобный регулятор можно использовать не только с электродвигателями, но и с лампами освещения. Таким образом, дёшево и сердито, можно собрать регулятор для яркости ламп освещения.

Подписывайтесь на мой канал в Дзен. Всем удачи, и мирного неба над головой!

Источник

Регулятор скорости двигателя постоянного тока 12 Вольт

В первую очередь всем здоровья :).

Необходим регулятор оборотов для двигателя постоянного тока? Собрать такой регулятор вполне возможно всего на одной отечественной микросхеме со вспомогательным мощным полевым транзистором.
Устройство рассчитано на питание от 12 Вольт постоянного напряжения, двигатель так же должен быть рассчитан на рабочее напряжение 12 Вольт. Регулировка оборотов осуществляется широтно-импульсным методом, в качестве генератора используются два логических элемента микросхемы К561ЛН2. Генератор вырабатывает импульсы порядка 15 кГц и устроен таким образом, что переменным резистором R1 можно менять длительность генерируемых импульсов, соответственно появляется возможность регулировать обороты двигателя. С выхода генератора импульсы поступают в буферный каскад, который представляет из себя четыре параллельно включенные логические элементы. К выходу буферного каскада напрямую подключен затвор мощного полевого транзистора IRF3205, нагрузкой которого и будет двигатель. R1 конструктивно совмещен с выключателем, который отключает генератор от буферного каскада, который подтянут через резистор R4 к положительной шине питания, таким образом при отключении выключателя на выходе буферного каскада формируется низкий уровень напряжения, который надёжно запирает полевой транзистор. Сама схема постоянно подключена к питающему напряжению и потребляет буквально микротоки, чтото около 2-5 мкА. Для надёжности в схеме применен фильтр по питанию на VD3R5C2 для микросхемы К561ЛН2, чтобы исключить попадание создаваемых двигателем помех в её цепь питания. Работоспособность схемы сохраняется в диапазоне питающих напряжений от 9 до 15 Вольт. Максимальный коммутируемый ток зависит от примененного полевого транзистора.

Читайте также:  Как узнать мощность двигателя вентилятора

Источник

ШИМ регулятор двигателя постоянного тока

Всем здравствуйте. Импульсные регуляторы скорости обычно используются для управления двигателями постоянного тока. Преимущество импульсного управления перед линейным управлением заключается в снижении потерь мощности на собственное регулирование и, кроме того, в сохранении крутящего момента двигателя.

При линейном управлении ток или напряжение, при которых подается питание на двигатель, ограничены, в то время как «теряется» на силовом элементе контроллера. Это рассеивание мощности, которое может достигать нескольких ватт даже с небольшими двигателями. И это одна из самых больших проблем линейного управления, потому что даже 10Вт представляют собой значительное выделяющее тепло на управляющем элементе.

Импульсные контроллеры в основном можно разделить на простые и с обратной связью. Обратная связь используется для стабилизации скорости. Это выгодно, когда необходимо обеспечить постоянную скорость двигателя независимо от его нагрузки или необходимо установить определенную скорость. В рассматриваемой схеме будет достаточно простого регулятора для небольших двигателей.

Первым каскадом схемы управления скоростью является нестабильный мультивибратор, построенный наг половине таймера 556. Это не что иное, как два известных независимых, много раз описанных таймеров 555. Время зарядки задается R1 + R2 и емкостью C1, только R2 применяется вне конденсатора во время разряда. С компонентами в соответствии на схеме генератор генерирует частоту 30,1 Гц.

По приходу фронта управляющего импульса на вход T начинается заряд конденсатора C3 через резистор R3. Во время зарядки выход находится в состоянии высокого логического уровня и тем самым открывает транзистор T1. Таким образом, двигатель постоянного тока, запускается импульсами длительностью около 0,8 мс и частотой 30,1 Гц. Однако это применимо только в том случае, если не используются другие цепи. Хотя сейчас много готовой продукции продается регуляторов ознакомится можно ниже.

Управление скоростью происходит таким образом, что импульсы меняют скважность. Следовательно, это широтно-импульсная модуляция управления двигателем с ограничением минимальной длины импульса, так что двигатель не получает импульсов меньше, чем достаточно для его работы.

Как известно, заряд и разряд синхронизирующего конденсатора происходит при штатном включении нестабильного мультивибратора (одновибратор) в диапазоне от 1/3 до 2/3 напряжения питания, в нашем случае от состояния полного разряда до 2/3 напряжения питания. Эти уровни контролируются двумя компараторами, которые получают свои опорные напряжения от трех резисторов, последовательно включенных между источником питания и землей. Схема стабилизатора питания регулятора на рисунке.

Резисторы имеют номинал 3 × 5 кОм в нормальном биполярном исполнении. Для версии C-MOS это значение установлено на 3 × 100 кОм, чтобы снизить потребление. Верхнее опорное напряжение, то есть 2/3 от напряжения питания, выводятся как IN и обычно используются для фильтрации. В нашем случае это напряжение подается на делитель, образованный подстроечным резистором P1, потенциометром P2 и резистором R5. Это создает два делителя, соединенных параллельно, и в результате верхний уровень смещается в зависимости от положения потенциометра.

Читайте также:  Процесс работы карбюраторного двигателя

Чем ниже это значение, тем раньше заканчивается заряд синхронизирующего конденсатора и, следовательно, тем короче выходные положительные импульсы, и наоборот. При использовании таймеров C-MOS схема также будет работать, только характер регулирования немного изменится, потому что сопротивления потенциометра и подстроечного резистора больше не будут применяться параллельно, а будут «принудительно» передавать свое напряжение непосредственно на вход IN.

Неинвертирующий вход компаратора IO2 подключен к потенциометру, инвертирующий вход имеет включен в делитель R6 / R7. Открытый коллектор выходного транзистора компаратора подключен к входу сброса одновибратор IO1B. Если бегунок потенциометра находится в таком положении, что его напряжение выше, чем напряжение, поступающее с делителя R6 / R7, выходной транзистор компаратора закрыт, и на нулевом входе IO1B имеется положительное напряжение с резистора R9.

Если напряжение с коллектора падает ниже уровня инвертирующего входа, компаратор переворачивается, его выходной транзистор открывается, и напряжение на нулевом входе IO1B близко к нулю. Это приводит к блокировке мультивибратора. Напряжение на инвертирующем входе компаратора также зависит от резистора обратной связи (R8), который вводит определенный гистерезис, поэтому на бегунке потенциометра требуется немного более высокое напряжение, чем было достаточно для блокировки.

Частью схемы также является уже упомянутый подстроечный резистор P1, который определяет диапазон регулирования потенциометра P2. Источник постоянного тока контроллера может находиться в диапазоне от 12В до примерно 24В. Компаратор и таймеры не зависят от напряжения, они будут хорошо работать при любом напряжении, но в этом случае, когда речь идет об импульсах для двигателя, вводится стабилизация, которая работает на более высоких напряжений. Монтаж контроллера выполнен на односторонней печатной плате.

Источник

Подборка схем регулятора оборотов двигателя постоянного тока

Производить регулировку скорости вращения вала коллекторного электродвигателя, имеющего малую мощность, можно подсоединяя последовательно в электроцепь его питания резистор. Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения.

Основное, что этот способ временами приводит к полной остановке электродвигателя при низком напряжении питания. Регулятор оборотов электродвигателя постоянного тока, описанные в данной статье, не имеют эти недостатки. Данные схемы можно с успехом применять и для изменения яркости свечения ламп накаливания на 12 вольт.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

На транзисторе VT1 (однопереходном) реализован генератор пилообразного напряжения (частота 150 Гц). Операционный усилитель DA1 играет роль компаратора, создающего ШИМ на базе транзистора VT2. В результате получается ШИМ регулятор оборотов двигателя.

Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на популярном таймере NE555. Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Читайте также:  Как поднять мощность дизельного двигателя

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Детали регуляторов вращения электродвигателей

В данных схемах возможно применить следующие замены радиодеталей: транзистор КТ817Б — КТ815, КТ805; КТ117А возможно поменять КТ117Б-Г или 2N2646; Операционный усилитель К140УД7 на К140УД6, КР544УД1, ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324.

При использовании более мощной нагрузки, ключевой транзистор КТ817 возможно поменять мощным полевым транзистором, например, IRF3905 или ему подобный.

Источник

ШИМ регулятор оборотов: схема модуля управления мотором

ШИМ регулятор оборотов двигателя постоянного тока проще всего организовать с помощью ШИМ регулятора. ШИМ — это широтно-импульсная модуляция, в английском языке это называется PWM — Pulse Width Modulation. Теорию я подробно объяснять не буду, информации полно в интернете.

ШИМ регулятор оборотов электродвигателя постоянного тока рассчитанного на напряжение 12 В

Своими словами — если у нас есть двигатель постоянного тока на 12 вольт — то мы можем регулировать обороты двигателя изменяя напряжение питания. Изменяя напряжение питания от нуля до 12 вольт будут изменятся обороты двигателя от нуля до максимальных. В случае с ШИМ регулятором мы будем изменять скважность импульсов от 0 до 100% и это будет эквивалентно изменению напряжения питания двигателя и соответственно будут изменятся обороты двигателя.

Рассмотрим первый ШИМ регулятор на 5 ампер. Есть такая самая любимая микросхема всех радиолюбителей — это таймер NE555 ( или советский аналог КР1006ВИ). Вот на этой микросхеме и собран ШИМ регулятор. Кроме таймера здесь я использую стабилизатор на 9 вольт LM7809, мощный полевой транзистор с N-каналом IRF540, сдвоенный диод Шоттки, а также другие мелкие детали. Схема по которой собран этот регулятор всем известна и очень популярна.


Печатку этой платы можно скачать — ШИМ 5A

В более мощном исполнении я применяю просто параллельное включение нескольких полевых транзисторов IRF540 и более мощный сдвоенный диод Шоттки. В остальном всё аналогично.


Печатку этой платы можно скачать — ШИМ 10A

Подключение ШИМ регулятора очень простое. Вы видите 4 клеммы — две клеммы для подачи питания (+) и (-), и две клеммы для подключения мотора (M+) и (M-).

Сделал еще ШИМ регулятор с защитой по току. Для этих целей использовал распространенный операционный усилитель LM358 и два оптрона PC817. При превышении тока, который мы задаем подстроечником R12, срабатывает триггер-защелка на операционнике DA3.1, оптронах DA4 и DA5 и блокируется генерация импульсов по 5 ноге таймера NE555. Чтобы снова запустить генерацию нужно кратковременно снять питание со схемы с помощью кнопки S1.


Печатку этой платы можно скачать — ШИМ 10А с защитой

ШИМ регуляторы все работоспособны, проверил их работу с помощью двигателя от шуруповерта.

ШИМ регулятор оборотов

Источник

Adblock
detector