Регулятор оборотов для судового двигателя

Моторист-рулевой

Мощность главного судового дизеля находится в строгом соответствии с частотой вращения коленчатого вала. Поэтому мощность двигателя и, следовательно, заданный скоростной режим судна обеспечиваются определенной частотой вращения, которая поддерживается автоматически регуляторами, изменяющими количество топлива, подаваемого насосами.

Вспомогательные дизели, приводящие в действие электрогенераторы (и особенно электрогенераторы переменного тока), должны иметь строго постоянную частоту вращения. Их мощность при неизменной частоте вращения коленчатого вала регулируется также автоматически, путем воздействия регуляторов на рейки топливных насосов.

Таким образом, регуляторы частоты вращения можно разделить на все режимные, поддерживающие любую заданную частоту вращения, и однорежимные, обеспечивающие двигателям только одну постоянную частоту вращения вала. Кроме этого, некоторые двигатели имеют двухрежимные регуляторы, ограничивающие, например, работу дизеля при сверхдопустимых оборотах и не позволяющие оборотам вала снизиться ниже минимально устойчивых, при которых двигатель может заглохнуть.

Если регулятор механически непосредственно воздействует на топливные насосы, изменяя подачу топлива, то его называют регулятором прямого действия. Но не всегда чувствительный элемент регулятора имеет возможность непосредственного воздействия на дозирующие органы топливных насосов. В этом случае применяют регуляторы непрямого действия, использующие различные усилительные устройства (сервомоторы), при тех же чувствительных элементах, что и у регуляторов прямого действия. Иногда конструкция привода регулятора требует некоторой корректировки в перемещении органов, дозирующих подачу топлива, и исполнительных элементов силовой части сервомотора регулятора. Такие регуляторы называют изодромными.

На рис. 116 дана схема работы всережимного регулятора прямого действия. Рукояткой 9 вручную с поста управления (или дистанционно из рубки) через дистанционную тягу 5 и рычаг 7 изменяют силу затяжки пружинного весового устройства 6. Пружина, воздействуя на втулку, связанную с рычагом 5, стремится сблизить грузы 10. Эти грузы вращаются вместе с центральным валом регулятора, связанным с коленчатым валом двигателя системой шестерен. При своем вращении за счет центробежной силы грузы стремятся разойтись и угловыми рычагами воздействуют на втулку, а следовательно, на пружину 6 и рычаг 5.

Ноли сила сжатой пружины 6 и сила воздействия расходящихся грузов 10 уравновешивают друг друга, то рычаг 5 не перемещается. Как только по каким-то причинам частота вращения коленчатого вала и, следовательно, вала регулятора увеличится, грузы разойдутся на большую величину и их сила превысит силу затяжки пружины. Правый конец рычага 5 вместе со втулкой регулятора переместится вверх, а рейка 1 топливных насосов 2 посредством углового рычага 4 выведет дозирующие элементы 3 на уменьшение подачи. Мощность двигателя и соответственно частота вращения вала снизятся. Грузы 10 возвратятся прежнее положение — частота вращения вала восстановится. Если снизится частота вращения вала, схема сработает в обратном порядке.

При резком возрастании частоты вращения коленчатого вала (поломка гребного вала, потеря гребного винта, резкий сброс нагрузки и т. д.) под действием центробежной силы грузики 10 регулятора разойдутся и через систему рычагов 4,5, тягу 1 передвинут рейку топливного насоса и плунжера топливного насоса на меньшую подачу топлива. Двигатель будет работать на заданном режиме по частоте вращения. Однорежимный (или предельный) регулятор, очевидно, по схеме своей работы будет отличаться только тем, что пружина 6 (см. рис. 116) будет иметь постоянную затяжку.

Для защиты двигателей от чрезмерно большой частоты вращения (разноса) в случае неисправности регуляторов, заедания рейки или плунжеров топливного насоса и др. на двигателях дополнительно устанавливаются автоматы предельных частот или регуляторы безопасности, которые либо прекращают подачу топлива к топливным насосам, либо перекрывают доступ воздуха в цилиндры двигателя.

Источник

Регулятор оборотов для судового двигателя

Регуляторы типа VG фирмы «Вудвард» (США) широко распространены на дизелях транс­портного флота (преимущественно модели UG и реже РG). Каж­дая из моделей бывает нескольких вариантов, различающихся

работоспособностью, способом задания скоростного режима и остаточной неравномерностью, а также устройствами для огра­ничения нагрузки, останова, защиты и др.

Регуляторы UG40TL применяют на малооборотным дизелем. Марка регулятора расшифровывается так: U — универсальный; G — регулятор; 40 — работоспособность регулятора в фунто-футах (

55,0 Дж), ТL — ограничение нагрузки. Регулятор UG-40ТL является авто­номным всережимным непрямого действия с гидравлическим сервомотором и масляным насосом, встроенным в общий корпус. Измеритель скорости — механический, центробежного типа, при­водится в движение от распределительного вала дизеля. Обратные связи (жесткая и изодромная) могут настраиваться. Рабочее давление масла 1,7 МПа, максимальная частота вращения коленча­того вала 1000 об/мин. Регулятор унифицированный, содержит механизмы: программного ограничения подачи топлива в функции задания скоростного режима, а также давления наддувочного воздуха; ограничения задания минимального скоростного режима; дистан­ционного останова через регулятор с помощью соленоида; оста­нова через входной вал регулятора (через механизм задания скоростного режима).

Регулятор 1ВРН-400 (СССР) (рис. 4.41) унифицирован­ный, непрямого действия высокой работоспособности (

40 Дж), полноценно заменяет регуляторы UG-40 фирмы «Вудвард», при­меняется для судовых дизелей 6ЧН 40/46 (6РС2-5) (эти дизели эксплуатируются с 1981 г. в составе двухмашинных агрегатов ДРА 6800/145-2ВГОМ4 на морских судах).

Технические харак­теристики: максимальная работоспособность 58,8 Дж; номиналь­ная работоспособность 39,2 Дж; номинальная частота вращения приводного вала 1000 об/мин; пределы изменения частоты вра­щения 30—105 %; пределы изменения наклона регуляторной характеристики 0—6 %; масла, применяемые в регуляторе, — МС20, МК22 (ГОСТ 21743—76) или SAE40 и SАЕ50. Регулятор гидромеханический с центробежным измерителем скорости, обо­рудованным пружинно-гидравлическим демпфером. На регуля­торе размещены указатели нагрузки, установленной частоты вра­щения, уровня масла (рис. 4.42).

Регулятор типа PGA фирмы «Вудвард» имеет гидравлическую обратную связь и пневматическую (индекс А) установку регулируемой частоты вращения. Он устанавливает частоту вращения дизеля путем изменения степени наполнения ТНВД. Регулятор типа PGA (рис. 4.43) состоит из следующих основных элементов: масляного насоса, двух баков для масла под давлением и одного клапана для поддержания постоянного дав­ления масла; механизма для измерения частоты вращения с рас­пределительным золотником, управляющим потоком масла к ра­бочему цилиндру и от него; рабочего цилиндра — серводвигателя, управляющего работой ТНВД (рабочий цилиндр выпускается простого действия — со встроен­ной возвратной пружиной, и двойного действия — с дифферен­циальным поршнем); системы об­ратной связи для стабилизации системы регулирования; устройства для пневматической пере­становки частоты вращения с целью облегчения дистанцион­ного регулирования частоты вра­щения.

Точное соответствие между частотой вращения и давлением управляющего воздуха является важным условием для оди­накового распределения нагрузки между двумя главного двигателя, работа­ющими на один винт. При отсутствии давления управляющего воздуха частота вращения может быть изменена непосредственно при помощи встроенной рукоятки.

Читайте также:  Дэу двигатель работает с провалами

Технические характеристики регулятора PGA: работоспособ­ность 17 Дж (с вращающимся выходным валом); ход поршня регулятора 25,4 мм (при вале с возвратно-поступательным дви­жением) и 30° (при вращающемся выходном вале); давление управляющего воздуха — 0,02 МПа (минимальное) и 0,7 МПа (максимальное); частота вращения 250—1000 об/мин; соотноше­ние между максимальной и минимальной частотами вращения 5 : 1. В регуляторе используется то же масло, что и для смазки главного двигателя (вязкость масла должна быть в пределах 70—100 сСт при 20 °С). Поглощаемая регулятором мощность составляет 0,37 кВт при рабочем давлении масла 0,7МПа. Масса регулятора 50—60 кг.

С помощью установки дополнительных устройств регулятор может выполнять вторичные функции: ограничение нагрузки при пуске, ограничение нагрузки по давлению наддувочного воздуха и по частоте вращения вала дизеля (рис. 4.44), регулирование нагрузки, временный допуск при перегрузке, выключение главного двигателя при отказе важных устройств, указание нагрузки и т. д.

В регуляторах типа PGA, в которых поршень перестановки частоты вращения коленча­того вала управляется гидравлически, можно при­менять выключающий электромагнит. Он позволяет производить ручное или автоматическое дистанционное выключение дизеля. Выключающее устройство состоит из магнита и невозвратного клапана, расположенного в гидравлической части устройства для перестановки частоты вращения между распределительным золот­ником и цилиндром перестановки частоты вращения.

Распределительный золотник регулирования нагрузки дизеля предназначен для изменения шага разворота лопастей винта регулируемого шага в за­висимости от каждого заданного значения частоты вращения, т. е. поддерживает постоянную нагрузку дизеля при каждом новом значении частоты вращения. Для обеспечения параллельной работы главного двигателя в регуляторах PGA применяется пневматическая система выравнивания нагрузки. На шток золотника чувстви­тельного элемента каждого регулятора воздействует пневматический сервомотор. Нижняя полость всех сервомоторов находится под одинаковым давлением воздуха, выходящего из датчика ведущего дизеля. У ведомых дизелей верхние полости серво­моторов подвергаются давлению воздуха, выходящего из пнев­матических датчиков этих дизелей. У ведущего дизеля обе полости пневматического сервомотора испытывают одинаковое давление, пропорциональное давлению воздуха на выходе его из датчика. При неравномерном распределении нагрузок на дизели силовые поршни регуляторов у ведомых дизелей займут разное поло­жение по отношению к ведущему дизелю. Сервомоторы ведомых регуляторов будут воздействовать на золотники чувствительных элементов своих регуляторов до тех пор, пока силовые поршни регуляторов не займут положение, одинаковое с положением силового поршня ведущего дизеля.

Электронные регуляторы находят все более широкое применение на судах. Задача электронного управле­ния — снизить токсичность и дымность выпускных газов, а также оптимизировать подачу топлива на каждом режиме работы, включая переходные, и тем самым уменьшить общий расход топлива. Механические регуляторы усовершенствованы до пре­дела и должны быть со временем заменены электронными.

Электронным регулятором изменяют цикловую подачу и на­чало подачи топлива. Основное преимущество электронного управления — наличие запоминающего устройства, в котором накапливается информация по оптимизированным одно- или мно­гомерным программам (полям характеристик), а также резуль­таты экспериментальных исследований взаимосвязи расходов топлива и токсичности газов на различных режимах работы, теплонапряженности деталей и узлов дизеля.

Структурная схема системы включает датчики, блок обработки сигналов датчиков, запоминающие устройства, микропроцессор, усилители и управляющие органы. В запоминающих устройствах заложены две программы:1) характеристики начала подачи топлива в функции частоты вращения вала и нагрузки дизеля; 2) характеристики максимального количества впрыскиваемого топлива в функции частоты вращения и атмосферного дав­ления.

Одним из первых универсальных регуляторов, установленных на морском судне, был электронный регулятор типа 540-01 фирмы «Дженерал Электрик». С его помощью осуществляют всережимное регулирование параметров. Входное напряжение постоянного тока от чувствительных элементов датчиков изменяется в пре­делах 1—5 В, ток на выходе — в диапазоне 10—50 мА при ве­личине сопротивления (нагрузки) 600 Ом. Исполнительные меха­низмы — кремниевые регулируемые выпрямители управляют работой электродвигателей регулирующих органов. В схеме авто­матического регулятора предусмотрены корректирующие устрой­ства в виде жесткой и гибкой обратных связей.

Переменные сопротивления регулятора дают возможность плавно изменять степень неравномерности регулирования, время изодрома и величину воздействия по интегралу в зависимости от требуемых динамических и Статических качеств системы авто­матического регулирования. В контуре регулирования частоты вращения коленча­того вала главного двигателя применяется индукционный датчик импуль­сов, в контуре температуры продувочного воздуха — электро­литический хлористолитиевый датчик температуры точки росы и платиновый термометр сопротивления, в контуре температуры охлаждения цилиндров дизель-генератора — платиновый термометр сопротив­ления.

Потребляемая мощность 14 Вт при напряжении 107—127 В и частоте 50—60 Гц. Зона пропорциональности 2—500 %, диапазон изменения выходного сигнала 10—50 В при нагрузке (0—600 Ом) ± 10 %, диапазон настройки изодромной обратной связи 0,1—25; 0,04—10; 0,01—2,5 мин.

Регулятор распределения нагрузки ULOS (теплоход «Смоленск») предназначен для равномерного распределения нагрузки между двумя главного двигателя и выравнивания час­тоты вращения вала в связи с изменением нагрузки. Считается, что нагрузка главного двигателя пропорциональна положению топливной рейки ТНВД. Ее положение измеряется топливными датчиками, пре­образующими положение рейки ТНВД в электрические сигналы соответствующего напряжения F 1 и F 2 , поступающие в фильтры преобразователи. Эти сигналы, содержащие информацию о пере­грузке главного двигателя, сравниваются в дифференциальном устройстве, в ко­тором определяется их разность, и передаются на регулятор Р1. Параметры регулятора Р1 зависят от величины пропорциональ­ности (деления мощности между дизелями), которую можно уста­новить в необходимом соотношении. Выходной сигнал из регуля­тора идет через селекторный выключатель к системе FАМР-2-12. Она посылает сигнал на соответствующий регулятор «Вудвард». Этот метод регулирования соответствует принципу «подчиня­ющий себе». Точность поддержания нагрузки ±1,0 % от поло­жения топливной рейки.

Источник

Методы регулирования частоты вращения судовых ДВС.

Судовые ДВС работают с переменными скоростными и нагрузочными режимами. При увеличении нагрузки частота вращения будет уменьшаться, в связи с чем для поддерживания постоянной частоты вращения необходимо увеличить подачу топлива в камеру сгорания. С уменьшением нагрузки, наоборот, частота вращения двигателя будет увеличиваться и подачу топлива следует уменьшить.

Автоматические системы регулирования скоростного режима ДВС должны после изменения внешней нагрузки и окончания переходного процесса восстанавливать первоначальную частоту вращения коленчатого вала или установить новую, соответствующую данной нагрузке.

Регулирование частоты вращения ДВС осуществляется вручную или автоматически при помощи регуляторов, которые по принципу действия делятся на предельные и скоростные, а по способу передачи усилия от чувствительного элемента к органу управления – на регуляторы прямого и непрямого действия. Регуляторы непрямого действия могут иметь жесткие и гибкие (изодромные)обратные связи.

Предельные регуляторы (регуляторы безопасности) ограничивают максимальную частоту вращения двигателя. При повышении частоты вращения на 10–15 % выше номинальной они снижают или полностью выключают подачу топлива в цилиндры.

Читайте также:  Когда двигатель нагреется начинают плавать обороты

Регуляторы частоты вращения, автоматически поддерживающие любой скоростной режим, заданный с поста управления двигателем в интервале «Малый ход» – «Полный ход», называются всережимными.

Практически все регуляторы судовых ДВС являются центробежными.

На рисунке дана схема предельного регулятора, принцип действия которого заключается в следующем. На вертикальном валу регулятора, который приводится во вращение от коленчатого вала, жестко закреплена крестовина (траверса) 9, на которой шарнирно (на осях) установлены угловые рычаги с грузами 8. Горизонтальные плечи этих рычагов упираются в муфту 10, нагруженную пружиной 7. Муфта может перемещаться вдоль вертикального вала регулятора. Верхним концом она связана с угловым рычагом 6, который может оказывать действие на пружинную связь 2. Последняя в свою очередь через рычаг 4 действует на регулирующий орган – зубчатую рейку топливного насоса 3, тем самым изменяя подачу топлива.

При работе двигателя на установившемся режиме грузы 8 под действием центробежных сил стремятся разойтись и с помощью горизонтальных плеч рычагов приподнять муфту 10. Этому противодействует пружина 7, подобранная с таким расчетом, чтобы при работе двигателя с допустимой частотой вращения ее усилие на муфту было несколько больше усилия, оказываемого на нее рычагами.

При уменьшении нагрузки частота вращения двигателя увеличивается, что приводит к повышению частоты вращения вертикального вала регулятора. Под действием увеличившейся центробежной силы грузы расходятся, угловые рычаги поворачиваются вокруг своих осей и, преодолевая сопротивление пружины, поднимают муфту 10 вверх. Рычаг 6, перемещаясь вместе с муфтой, передвигает пружинную связь 2 влево, которая через рычаг 4 уменьшает (или совсем отключает) подачу топлива насосами высокого давления. В результате двигатель снижает частоту вращения и центробежная сила грузов уменьшается. Пружина регулятора передвигает муфту вместе с рычагом 6 вниз, а пружина 5 возвращает пружинную связь в первоначальное положение, увеличивая цикловую подачу топлива.

Таким образом, предельный регулятор включается в действие, когда частота вращения двигателя превышает предельно допустимую и может привести к выходу его из строя. Рукоятка 1 и тяга 11 служат для включения и выключения ТНВД в работу.

Большинство главных ДВС промысловых судов, которые 60–80 % эксплуатационного времени работают в условиях постоянно изменяющихся нагрузок, имеют всережимные регуляторы.

Одна из конструкций все-режимного регулятора показана на рисунке:

Он состоит из вертикального вала, вращающегося в подшипниках качения, на нижнем конце которого неподвижно закреплена шестерня 12, приводимая во вращение (через зубчатую передачу) коленчатым валом.

В средней части вертикального вала на шпонке установлена крестовина 11, на которой шарнирно (на осях) установлены два груза 10 с угловыми рычагами. Горизонтальные плечи рычагов упираются во втулку 9 и во время работы перемещают ее вдоль вертикального вала. Сверху втулка через муфту 8 нагружена двумя пружинами 6 (внешней и внутренней), упирающимися в подпятник 1. Изменение натяжения пружин осуществляется нижней нарезной частью винта 3, который зафиксирован от проворачивания, но может перемещаться в осевом направлении. Перемещение винта вверх – вниз осуществляется при помощи конической шестерни 2, имеющей винтовую нарезку по внутреннему диаметру. Она выполняет роль гайки и приводится во вращение другой конической шестерней 4, при помощи шпонки жестко закрепленной на горизонтальном валу с маховиком 5 на другом его конце. Вращение маховика в ту или другую сторону сопровождается перемещением винта 3 вверх – вниз, что вызывает изменение силы натяжения пружин.

Муфта 8 рычажной передачей связана с рейкой топливных насосов высокого давления. На любом установившемся режиме двигателя центробежные силы грузов уравновешиваются действием пружин и двигатель вращается с определенной частотой.

При резком сбросе нагрузки и увеличении частоты вращения двигателя выше допустимой работа всережимного регулятора аналогична работе предельного. За счет увеличения частоты вращения грузы 10 расходятся в крайние положения и, преодолевая силу упругости, поднимают втулку 8 и рычаг 7 вверх, тем самым значительно уменьшая подачу топлива в цилиндры. Частота вращения коленчатого вала снижается, центробежные силы грузов уменьшаются и пружины ставят их в положение, близкое к первоначальному. Одновременно с этим подача топлива увеличивается, а частота вращения вновь повышается, но уже на меньшую величину. Так повторяется несколько раз, пока не установится постоянная предельная частота вращения.

Чтобы изменить частоту вращения двигателя в интервале «Малый ход» – «Полный ход», необходимо вращать рукоятку маховика 5 в нужную нам сторону. При вращении его по часовой стрелке винт 3 опускается вниз и через подпятник 1 увеличивает натяжение пружин. Необходимо отметить, что на малых и средних оборотах внутренняя пружина находится в свободном состоянии, а действует только одна внешняя. При дальнейшем-повышении частоты вращения в действие вступают обе пружины. Увеличение силы затяжки пружины приводит к сближению грузов, опусканию втулки 8, увеличению подачи топлива и повышению частоты вращения коленчатого вала.

Уменьшение частоты вращения двигателя достигается с поста управления вращением маховика против часовой стрелки. В этом случае сила натяжения пружин уменьшается, грузы 10 под действием центробежной силы разойдутся, горизонтальные плечи угловых рычагов поднимут втулку 8, которая, действуя на рычаг 7, уменьшит подачу топлива в цилиндры двигателя.

2) Методы регулирования температуры в судовых дизель­ных установках.

Регулирование температуры охлаждающей воды и смазочного масла в судовых ДВС осуществляется следующими способами: дросселированием, обводом и перепуском охлаждающей жидкости.

Способ дросселирования заключается в том, что изменение производительности насоса, подающего охлаждающую жидкость к двигателю, производится за счет изменения проходного сечения трубопровода (вентиля). Этот способ чаще применяется при ручном регулировании в системах циркуляции, снабженных центробежными насосами.

К недостатку этого способа регулирования следует отнести то, что система охлаждения при работе ДВС на малых нагрузках часто оказывается под большим гидравлическим давлением, что отрицательно сказывается на уплотнениях самой системы. Кроме того, для поддержания постоянной температуры на малых нагрузках приходится пропускать через двигатель небольшое количество охлаждающей жидкости, что приводит к ухудшению циркуляции, появлению паровых мешков, местных перегревов и т. д.

Способ обвода заключается в применении дополнительной обводной магистрали, по которой перекачивается часть охлаждающей жидкости, минуя охлаждаемый двигатель. Преимуществом этого способа является то, что напор насоса практически не зависит от положения регулирующего органа.

Способ перепуска заключается в перепуске части отходящей из двигателя охлаждающейжидкости в приемную магистраль – на слив идет не вся жидкость, а только ее часть. При использовании способа перепуска через систему охлаждения двигателя прокачивается вода при наибольшем ее расходе, что обеспечивает хорошее смывание и бесперебойный теплоотвод от охлаждаемых поверхностей. В системе охлаждения устанавливаются минимальные перепады температур, в результате чего цилиндровая группа ДВС работает в более благоприятных температурных условиях. Наличие перепуска значительно сокращает время прогрева холодного двигателя.

Читайте также:  Как подключить тахометр на газели 406 двигатель инжектор

В системах охлаждения двигателей очень широко используются терморегуляторы прямого и непрямого действия.

На рисунке показан терморегулятор прямого действия типа РПД, который применяется в ДВС средней мощности для регулирования температуры воды и масла.

Терморегулятор состоит из двухпроходного корпуса 3, в котором закреплены нижнее 2 и верхнее 4 гнезда сдвоенного клапана 1, нижнего 5 и верхнего 10 штоков, пружины 9 и регулировочной гайки 8, термопатрона 14 с капилляром и сильфоном и др.

Термопатрон устанавливается с помощью ввертыша 13 и гайки 12. При повышении температуры регулируемой среды (воды, масла) давление паров в термопатроне повышается, передается на клапан 1 через штоки 5 и 10 и сжимает пружину 9. Первоначальное натяжение пружины, при котором начинается движение клапана 1, устанавливается регулировочной гайкой 8. Рабочий ход клапана определяется суммарной длиной штоков 5 и 10. В основании 6 терморегулятора установлен нажимной винт 11 сальника, служащего для предотвращения протечки регулируемой среды вдоль штока 5. В процессе эксплуатации сальник периодически поджимается накидной гайкой 7.

Терморегулятор непрямого действия типа ТРП, использующий пневматическую силовую среду, предназначен для регулирования температуры охлаждающей воды и смазочного масла ДВС большой мощности.

Терморегулятор состоит из двух основных узлов – задающего и исполнительного (пневматического регулирующего золотника). Задающий (блок управления терморегулятором) предназначен для выявления отклонений температуры регулируемой среды от заданных значений и преобразования их в изменение давления воздуха в верхней полости мембранного сервомотора пневматического регулирующего золотника.

3) Методы регулирования вязкости топлива в системах по­дачи ДВС.

Различные сорта тяжелых топлив, а иногда и топлива одного и того же сорта, но разных бункеровок имеют при одинаковой температуре существенно различающуюся вязкость. С целью повышения надежности работы дизельной установки и улучшения топливоис-пользования, топливные системы дизелей оборудуются автоматическими системами регулирования вязкости.

Известен способ автоматического регулирования вязкости жидкого топлива, заключавщийся в измерении расходов компонентов и температуры.

4) Структура системы ДАУ главными судовыми двигателя­ми.

Системы ДАУ главными двигателями относятся к числу основных систем автоматизации.

В состав дизельной установки входят сам дизель и системы, обеспечивающие его функционирование, – системы пуска, реверса, смазки, охлаждения, топливоподачи, наддува, управления.

Безаварийная и экономичная работа дизельной установки возможна при условии автоматического контроля и управления основными рабочими параметрами дизеля.

К рабочим параметрам, по которым осуществляется автоматическое регулирование, защита и сигнализация, относятся: температура атмосферного воздуха Т, наддувочного воздуха во впускном коллекторе Тк, выпускных газов по цилиндрам и средняя за газовой турбиной Tг, пресной воды на входе Oв1 и на выходе Ов2, смазочного масла на входе Ом1 и на выходе Ом2; давление атмосферного воздуха р, воздуха во впускном коллекторе рк, смазочного масла рм, газов в выпускном коллекторе рг, охлаждающей воды рв; крутящий момент М и частота вращения n коленчатого вала. На рис. 1 представлена обобщенная схема автоматического контроля и регулирования дизеля.

Рис. 1. Обобщенная схема автоматического контроля и регулирования дизеля:

1, 22 – насосы забортной и пресной воды; 2, 13, 21 – холодильники пресной воды наддувочного воздуха и масла; 3, 20 – регуляторы температуры пресной воды и смазочного масла; 4 – регулятор давления масла в системе смазки; 5, 19 – нагнетательный и откачивающий масляные насосы; 6 – главная масляная магистраль; 7 – полости охлаждения; 8, 17 – выпускной и впускной коллекторы; 9 – кулачковые валы механизма газораспределения; 10, 11 – газовая турбина и компрессор турбонагнетателя (первая ступень наддува); 12 – автомат изменения угла заклинивания кулачковых валов; 14 – регулятор частоты вращения коленчатого вала; 15 – нагнетатель с механическим приводом (вторая ступень наддува); 16 – топливный насос высокого давления; 18 – коленчатый вал

Контроль за температурой и давлением осуществляется через соответствующие датчики. Для управления величинами крутящего момента и частоты вращения коленчатого вала служит общий регулирующий орган –топливодозирующая аппаратура дизеля. Причем в установившихся режимах работы регулятор частоты вращения поддерживает заданный скоростной режим, изменяя подачу топлива на цикл в соответствии с изменением нагрузки на дизель.

Несмотря на взаимное влияние основных рабочих параметров, большая инерционность дизеля по отношению к взаимосвязанным параметрам позволяет создавать системы их несвязанного регулирования.

Системы автоматизированного управления дизельными установками обеспечивают автоматическое выполнение как минимум следующих операций: пуск, вывод на заданный скоростной режим, остановку, реверс. В общем виде структура системы может быть представлена схемой, показанной на рис. 2.

Рис. 2. Обобщенная структурная схема системы ДАУ главным двигателем

В состав системы входят два поста дистанционного управления: ПДУ1– в ЦПУ машинного отделения; ПДУ2 – в рулевой рубке. В ПДУ1 размещена аппаратура дистанционного контроля рабочих параметров и состояния механизмов, систем и устройств, а также предусматривается возможность подачи всех команд. В ПДУ2 размещены аппаратура сигнализации только о состоянии основных механизмов и устройств, приборы контроля рабочих параметров, определяющие режим движения судна (частоту вращения гребного вала) и командные органы для изменения режима движения судна.

В блоке логики вырабатываются командные сигналы на базе анализа сигналов, поступающих с ПДУ, систем судовой автоматики и различных датчиков, контролирующих состояние объекта управления (дизеля). Командные сигналы от блока логики после усиления поступают в цепи управления работой исполнительных двигателей, воздействующих на регулирующие органы. В блоке логики размещают ряд субблоков, каждый из которых обеспечивает только одну операцию управления, согласно заложенной в нем программе.

Для построения функциональных устройств в системах ДАУ применяют: в устройствах логики – пневматические и электронные элементы; исполнительные двигатели – электрические, гидравлические, пневматические; в цепях управления – электрические и пневматические элементы; в системах сигнализации – электрические элементы.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Источник

Adblock
detector