Реферат общее устройство и работа двигателя автомобиля

Общее устройство и работа двигателя

Классификация автомобильных двигателей. Назначение, устройство, принцип работы и основные неисправности кривошипно-шатунного механизма. Техническое обслуживание и ремонт механизма газораспределения. Проведение диагностических и очистительных работ.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 29.11.2016
Размер файла 247,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Тема работы: «Общее устройство и работа двигателя»

2016-2017 учебный год

«Скелетом» двигателя можно считать кривошипно-шатунный механизм (КШМ), который служит для преобразования поступательного движения поршня во вращательное движение коленчатого вала, и, как всякий скелет, состоит из подвижных и неподвижных частей. Неподвижны блок цилиндров с верхней частью картера, головка блока и масляный поддон (в живой природе аналогично сосуществуют черепаха и ее панцирь); подвижны — коленвал, шатун и поршень. КШМ — самый нагруженный и подверженный наибольшему износу механизм двигателя.

В кривошипно-шатунном механизме (КШМ) действуют силы инерции поступательно движущихся масс (ПДМ) и вращательно двищущихся масс. Силы инерции ПДМ вызывают массы поршневой группы (поршень-кольца-палец-вершняя часть шатуна). Силы инерции вращательных масс вызывают массы шатунной шейки, щек колевала и нижней части шатуна. Для «гашения» сил инерции ПДМ 1-го порядка и сил инерции ВМ, при расчете коленвала проектируются специальные противовесы и (или) дисбаланс в маховике. При изготовлении на заводе коленвал всборе с маховиком проходит динамическую балансировку исходя из строго определенной массы поршневого комплекта, поэтому нельзя использовать маховик от другого коленвала. При сборке поршневого комплекта, допуск по весу составляет всего несколько грамм по общему весу. Нарушение этих условий влечет за собой появление вибрации при работе двигателя и преждевременный износ деталей КШМ.

Перечислим основные «болезни» и симптомы, вызванные ненормальной работой КШМ и ГРМ.

Если двигатель не развивает полной мощности, плохо заводится, становится прожорливым, греется — это может быть следствием снижения компрессии в цилиндрах двигателя. Одна из причин — износ или залегание (потеря подвижности и неплотное прилегание к стенке цилиндра) поршневых колец. Другая причина, имеющая место только в бензиновых двигателях, — образование губчатых отложений на впускных клапанах. В результате ухудшается наполнение цилиндров, падает мощность. Негерметичность прокладки между блоком и головкой также спровоцирует целый букет малоприятных симптомов.

Многие неисправности можно определить на слух: металлический стук при холодном двигателе, пропадающий по мере его прогрева, — следствие износа юбки (тронка) поршня; резкий стук при изменении числа оборотов — результат износа поршневого пальца, болтающегося в бобышках; глухой стук при изменении числа оборотов — износились вкладыши. Отсутствие теплового зазора (следствие которого — неполное закрытие клапанов) вызывает хлопки во впускном и выпускном трубопроводе. В резком металлическом стуке под клапанной крышкой, сопровождающимся падением мощности, виноват нарушившийся тепловой зазор в приводе клапанов.

Причиной стука под клапанной крышкой может быть нарушение регулировки или выход из строя гидрокомпенсатора, если таковой имеется. В этом случае ситуация поправима с помощью автохимии.

Правильная эксплуатация двигателя крайне необходима, так как его ремонт достаточно трудоемкий и дорогостоящий процесс. И к кривошипно-шатунному механизму, это относится в первую очередь.

Ресурс работы двигателя — это продолжительность нормальной работы двигателя без его капитального ремонта. Для отечественных автомобилей ресурс двигателя составляет приблизительно 150 — 200 тысяч километров пробега, и несколько больше для иномарок.

Двигатель также требует периодических регулировок. Необходимо соблюдать сроки обслуживания его механизмов и систем, как этого рекомендует завод-изготовитель автомобиля.

Первый фактор, уменьшающий ресурс двигателя — частые перегрузки автомобиля.

Вторым фактором, влияющим на срок службы двигателя, является движение с максимально возможной скоростью длительное время.

Третий фактор, ускоряющий износ двигателя — экология. Грязный воздух и грязные дороги укорачивают жизнь не только человеку, но и разрушающе действуют на структуру металла, уменьшая ресурс двигателя. Поэтому необходимо вовремя производить замену фильтров, по мере возможности применять чистые масла и бензин, следить за внешним видом двигателя автомобиля.

автомобильный кривошипный ремонт газораспределение

Общее устройство и работа двигателя

Двигатель — это агрегат, преобразующий какой-либо вид энергии в механическую работу. На отечественных легковых автомобилях устанавливаются поршневые двигатели внутреннего сгорания, в которых тепловая энергия, получаемая при сгорании топлива внутри цилиндров двигателя преобразуется в механическую работу, используемую для передвижения автомобиля. Расширяющиеся при сгорании рабочей смеси (смесь топлива с воздухом) в цилиндрах двигателя газы воздействуют на поршни, поступательное движение которых преобразуется кривошипно-шатунным механизмом во вращательное движение коленчатого вала, которое в свою очередь передается при помощи агрегатов трансмиссии на ведущие колеса автомобиля, приводя его в движение.

Классификация автомобильных двигателей осуществляется по следующим признакам: по способу образования горючей смеси и ее воспламенения — с внешним смесеобразованием и принудительным воспламенением от электрической искры (карбюраторные и газовые) и с внутренним смесеобразованием и самовоспламенением от соприкосновения с нагретым в результате сильного сжатия воздухом (дизельные); по способу осуществления рабочего цикла — четырехтактные и двухтактные; по числу и расположению цилиндров — однорядные с вертикальным или наклонным расположением цилиндров и V-образные двухрядные с расположением рядов цилиндров под углом друг к другу; по способу охлаждения — с жидкостным и воздушным охлаждением. Общее устройство, основные параметры и принцип работы двигателя рассмотрим на примере одноцилиндрового четырехтактного карбюраторного двигателя.

Основными частями двигателя являются кривошипно-шатун-ный механизм, механизм газораспределения и системы: система охлаждения, смазочная система, система питания, система зажигания и система пуска двигателя, которые выполняют различные функции и обеспечивают при взаимодействии работу двигателя. Основные параметры двигателя включают в себя следующие. Ход поршня S — путь, проходимый им от одной мертвой точки до другой. Ход поршня равен удвоенному радиусу R кривошипа. За один ход поршня коленчатый вал поворачивается на 180°, т.е. совершает половину оборота. Мертвыми точками называются крайние положения поршня, где он меняет направление движения и его скорость равна нулю.

При нахождении в верхней мертвой точке (ВМТ) поршень наиболее удален от оси коленчатого вала, а в нижней мертвой точке (НМТ) — наиболее приближен к ней. Рабочий объем цилиндра Vp — объем, освобождаемый поршнем при движении от верхней мертвой точки до нижней. Сумма рабочих объемов всех цилиндров многоцилиндрового двигателя, выраженная в литрах, называется рабочим объемом двигателя (литражом). Ч

ем больше рабочий объем цилиндров двигателя, тем при прочих равных условиях выше его мощность. Объем камеры сгорания Vc — объем, образующийся над поршнем, когда последний находится в ВМТ. Полный объем цилиндра Vn — это объем пространства над поршнем при его нахождении в НМТ. Он равен сумме рабочего объема и объема камеры сгорания. Степень сжатия — отношение полного объема цилиндра к объему камеры сгорания. При большей степени сжатия рабочая смесь в конце такта сжатия будет занимать меньший объем, поэтому увеличиваются давление и температура рабочей смеси, а также скорость ее сгорания. В результате этого повышаются экономичность и мощность двигателя за счет уменьшения тепловых потерь и увеличения среднего давления газов на поршень при рабочем ходе. Однако повышение степени сжатия в карбюраторном двигателе ограничено стойкостью топлива к детонации (сущность детонации рассматривается в разд. «Система питания»).

Степень сжатия в карбюраторных двигателях находится в пределах от 6 до 10. Мощность, развиваемая газами в цилиндрах двигателя при сгорании топлива, называется индикаторной, а снимаемая с коленчатого вала — эффективно й. Она на 15. . . 25% меньше индикаторной из-за потерь на трение в двигателе, приведение в движение его механизмов и приборов и совершение вспомогательных ходов поршня. Рабочим циклом называется совокупность процессов, периодически -повторяющихся в определенной последовательности в цилиндре двигателя. Рабочий цикл четырехтактного карбюраторного двигателя осуществляется за два оборота коленчатого вала и состоит из четырех тактов: впуска, сжатия, рабочего хода (сгорание и расширение) и выпуска отработавших газов.

Такт — это процесс, происходящий в цилиндре за один ход поршня. Первый такт — впуск. При движении поршня 12 от ВМТ вниз к НМТ вследствие увеличения объема в цилиндре создается разрежение до 0, 07. 0,08 МПа, под действием которого из карбюратора через открывающийся впускной клапан 11 в камеру сгорания 4 и цилиндр 2 по впускному трубопроводу 10 поступает горючая смесь (смесь мелкораспыленного бензина с воздухом). В камере сгорания горючая смесь смешивается с оставшимися в ней от предыдущего рабочего цикла отработавшими газами и образует рабочую смесь с температурой 100 — 130°С. Второй такт — сжатие. Поршень движется вверх, оба клапана закрыты. Так как объем в цилиндре уменьшается, то происходит сжатие рабочей смеси и повышение ее температуры. Давление в цилиндре в конце такта сжатия составляет 0, 8. 1,2 МПа, а температура повышается до 300. . . 480°С. Третий такт — рабочий ход (сгорание и расширение). В конце такта сжатия рабочая смесь воспламеняется электрической искрой 14 от свечи зажигания 6 и быстро сгорает (в течение 0, 001. 0,002 с). При этом выделяется большое количество тепла и, как следствие, повышается температура до 2000. 2500°С и давление газов, которое возрастает до 3, 5. 4,0 МПа и передается на поршень, перемещая его от ВМТ к НМТ. Сила давления газов от поршня 12 передается через поршневой палец 3, шатун 13 и кривошип на коленчатый вал 1, создавая на нем крутящий момент. Четвертый такт — выпуск. Поршень вновь движется к ВМТ и под давлением 0, 11. 0,12 МПа выталкивает отработавшие газы, имеющие температуру 800. НОО’С, в атмосферу через открывающийся выпускной клапан 7 и выпускной трубопровод 5, после чего цилиндр оказывается подготовленным к повторению рабочего цикла. Из рассмотренного рабочего цикла видно, что полезная работа совершается в течение только одного такта — рабочего хода, остальные же три такта являются вспомогательными и на их осуществление затрачивается часть энергии.

Энергия, полученная при рабочем ходе, накапливается маховиком 11 — массивным диском, установленным на заднем конце коленчатого вала. В целях получения большей мощности и равномерности вращения коленчатого вала двигатели делают многоцилиндровыми. Так, в четырехцилиндровых двигателях изучаемых легковых автомобилей за два оборота коленчатого вала получается уже не один, а четыре рабочих хода (по одному в каждом цилиндре). Для равномерной и плавной работы многоцилиндрового двигателя одноименные такты в разных его цилиндрах должны чередоваться в определенной последовательности. Эта установленная последовательность чередования одноименных тактов в цилиндрах называется порядком работы двигателя. Порядок работы двигателя зависит от расположения шатунных шеек с кривошипами на коленчатом валу и кулачков на распределительном валу. Если в четырехцилиндровом двигателе, у которого шатунные шейки расположены попарно под углом 180° (первая с четвертой и вторая^ третьей) в одной плоскости, в первом цилиндре в течение первого полуоборота коленчатого вала происходит рабочий ход, то в четвертом цилиндре в это время — впуск. При этом поршни второго и третьего цилиндров одновременно будут двигаться вверх, совершая соответственно выпуск и сжатие. Тогда за следующие три полуоборота коленчатого вала произойдет рабочий ход последовательно в третьем, затем в четвертом и, наконец, во втором цилиндрах. Такой порядок работы цилиндров (1-3-4-2) применен на всех изучаемых двигателях.

Читайте также:  Двигатель дергает при холостых оборотах

Порядок работы необходимо знать для правильного присоединения проводов высокого напряжения к свечам при установке зажигания, а также для регулировки тепловых зазоров в механизме газораспределения.

2. Назначение, устройство и работа

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

Рис. 1. Общий вид четырехцилиндрового двигателя (продольный и поперечный разрез) 1 — блок цилиндров; 2 — головка блока цилиндров; 3 — поддон картера двигателя; 4 — поршни с кольцами и пальцами; 5 — шатуны; 6 — коленчатый вал; 7 — маховик; 8 — распределительный вал; 9 — рычаги; 10 — впускные клапаны; 11 — выпускные клапаны; 12 — пружины клапанов; 13 — впускные и выпускные каналы

У четырехцилиндрового двигателя кривошипно-шатунный механизм состоит из:

1. блока цилиндров с картером,

2. головки блока цилиндров,

3. поддона картера двигателя,

4. поршней с кольцами и пальцами,

5. шатунов, коленчатого вала,

В состав КШМ кривошипно-шатунного механизма двигателя входит две группы деталей: неподвижные и подвижные.

К неподвижным деталям относятся блок цилиндров, служащий основой двигателя, цилиндр, головки блока или головки цилиндров и поддон картера. Подвижными деталями являются поршни с кольцами и поршневыми пальцами, шатун, коленчатый вал, маховик. Кривошипно-шатунный механизм воспринимает давление газов при такте сгорание-расширение и преобразовывает прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

У V-образных двигателей блок цилиндров представляет собой массивный литой корпус, снаружи и внутри которого монтируются все механизмы и системы. Блок цилиндров объединяет в себе не только цилиндры и шатунно-поршневую группу, но и другие системы двигателя. Он является основой двигателя, в которой есть множество литых каналов и сверлений, подшипников и заглушек. Именно в блоке цилиндров вращается (на подшипниках) коленчатый вал. Во внутренних полостях блока циркулирует жидкость системы охлаждения, там же проходят и масляные каналы системы смазки двигателя. Большая часть из навесного оборудования двигателя монтируется, опять же, на блоке цилиндров.

Нижняя часть блока является картером, в литых поперечинах которого расположены опорные гнезда для подшипников коленчатого вала. Такую отливку часто называют блок-картером.

В средней части блока цилиндров имеются отверстия для установки подшипников скольжения под опорные шейки распределительного вала. Плоскость разъема блока может проходить по оси коленчатого вала или быть смещенной относительно ее вниз. К нижней части блок-картера крепится стальной штампованный поддон, служащий резервуаром для масла. По каналам в блоке масло из поддона подается к трущимся деталям двигателя.

На V-образных двигателях для повышения жесткости блока цилиндров его плоскость разъема, расположена ниже оси коленчатого вала.

В отливке блока цилиндров имеется рубашка для жидкостного охлаждения двигателя, представляющая собой полость между стенками блока и наружной поверхностью вставных гильз. Охлаждающая жидкость подается в рубашку охлаждения через два канала, расположенные по обеим сторонам блока цилиндров. К передней части блока цилиндров крепится крышка распределительных шестерен, а к задней — картер сцепления.

Блок цилиндров отливается из серого чугуна или из алюминиевого сплава.

Рабочая поверхность цилиндров является направляющей при движениях поршня и вместе с ним и головкой блока цилиндров образует замкнутое пространство, в котором происходит рабочий цикл двигателя. Для плотного прилегания поршня и поршневых колец к цилиндру и уменьшения сил трения между ними внутреннюю полость цилиндров тщательно обрабатывают с высокой степенью точности и чистоты, и поэтому она называется зеркалом цилиндра.

Цилиндры могут быть отлиты как одно целое со стенками рубашки охлаждения или изготовлены отдельно от блока в виде вставных гильз. Последние подразделяются на «сухие» гильзы, запрессованные в расточенный блок, и сменные, «мокрые» гильзы, омываемые с наружной стороны охлаждающей жидкостью.

При сгорании рабочей смеси верхняя часть цилиндров сильно нагревается и подвергается окислительному воздействию продуктов сгорания, поэтому в верхнюю часть блока цилиндров или гильз, как правило, запрессовывают короткие вставки — сухие гильзы длиной 40 — 50 мм.

Вставки изготовляют из легированного чугуна, обладающего высокой износо- и коррозионной стойкостью. При установке мокрой гильзы ее борт выступает над плоскостью разъема на 0,02 — 0,15 мм. Это позволяет уплотнять ее, зажимая борт через прокладку между блоком и головкой цилиндров. В нижней части гильза уплотняется двумя резиновыми кольцами или медными прокладками, установленными по торцу нижнего пояса гильзы. Преимущественное применение в двигателях мокрых гильз связано с тем, что они обеспечивают лучший отвод тепла. Это повышает работоспособность и срок службы деталей цилиндропоршневой группы, при этом снижаются затраты, связанные с ремонтом двигателей в процессе эксплуатации.

Головка блока цилиндров является второй по значимости и по величине составной частью двигателя. В головке расположены камеры сгорания, клапаны и свечи цилиндров, в ней же на подшипниках вращается распределительный вал с кулачками. Так же, как и в блоке цилиндров, в его головке имеются водяные и масляные каналы и полости. Головка крепится к блоку цилиндров и, при работе двигателя, составляет с блоком единое целое.

В головке цилиндров размещены камеры сгорания, в которых установлены впускные и выпускные клапаны, свечи зажигания или форсунки.

На головке цилиндров крепятся детали и узлы привода клапанного механизма.

Значительное влияние на процесс смесеобразования как в карбюраторных двигателях, так и в дизельных имеют формы камеры сгорания. В карбюраторных двигателях наибольшее распространение получили цилиндрические полусферические и клиновые камеры с верхним расположением клапанов. Для создания герметичности между блоком и головкой цилиндров установлена прокладка, а крепление головки к блоку цилиндров осуществлено шпильками с гайками. Прокладка должна быть прочной, жаростойкой и эластичной.

Поршень воспринимает давление газов при рабочем такте и передает его через поршневой палец и шатун на коленчатый вал. Поршень представляет собой перевернутый цилиндрический стакан, отлитый из алюминиевого сплава. В верхней части поршня расположена головка с канавками, в которые вставлены поршневые кольца. Ниже головки выполнена юбка, направляющая движение поршня. В юбке поршня имеются приливы-бобышки с отверстиями для поршневого пальца.

При работе двигателя поршень, нагреваясь, расширится и, если между ним и зеркалом цилиндра не будет необходимого зазора, заклинится в цилиндре и двигатель прекратит работу. Однако большой зазор между поршнем и зеркалом цилиндра также нежелателен, так как это приводит к прорыву части газов в картер двигателя, падению давления в цилиндре и уменьшению мощности двигателя. Чтобы поршень не заклинивался при прогретом двигателе, головку поршня выполняют меньшего диаметра, чем юбка, а саму юбку в поперечном сечении изготавливают не цилиндрической формы, а в виде эллипса с большой осью его в плоскости, перпендикулярной поршневому пальцу. На юбке поршня может быть разрез. Благодаря овальной форме и разрезу юбка предотвращает заклинивание поршня при работе прогретого двигателя.

Поршневые кольца, применяемые в двигателях, подразделяются на компрессионные и маслосъемные.

Компрессионные кольца уплотняют зазор между поршнем и цилиндром и служат для уменьшения прорыва газов из цилиндров в картер, а малосъемные снимают излишки масла с зеркала цилиндров и не допускают проникновение масла в камеру сгорания. Кольца, изготовленные из чугуна или стали, имеют разрез (замок).

При установке поршня в цилиндр поршневое кольцо предварительно сжимают, в результате чего обеспечивается его плотное прилегание к зеркалу цилиндра при разжатии. На кольцах имеются фаски, за счет которых кольцо несколько перекашивается и быстрее притирается к зеркалу цилиндра, и уменьшается насосное действие колец.

При установке колец на поршень их замки следует размещать в разные стороны.

Для шарнирного соединения поршня с верхней головкой шатуна служит поршневой палец. Через пальцы передаются значительные усилия, поэтому их изготовляют из легированных или углеродистых сталей с последующей цементацией или закалкой ТВЧ. Поршневой палец представляет собой толстостенную трубку с тщательно отшлифованной наружной поверхностью, проходящую через верхнюю головку шатуна и концами опирающуюся на бобышки поршня.

По способу соединения с шатуном и поршнем пальцы делятся на плавающие и закрепленные (обычно в головке шатуна). Наибольшее распространение получили плавающие поршневые пальцы, которые свободно поворачиваются в бобышках и во втулке, установленной в верхней головке шатуна. Осевое перемещение поршневого пальца ограничивается стопорными кольцами, расположенными в выточках бобышек поршня.

При работающем двигателе в бобышках поршня возможны стуки пальцев из-за различного коэффициента линейного сплава и стали.

Шатун служит для соединения поршня с кривошипом коленчатого вала и обеспечивает при такте рабочего хода передачу усилия от давления газов на поршень к коленчатому валу, а при вспомогательных тактах (впуск, сжатия, выпуск), наоборот, от коленчатого вала к поршню. При работе двигателя шатун совершает сложное движение. Он движется возвратно-поступательно вдоль оси цилиндра и качается относительно оси поршневого кольца.

Шатун штампуют из легированной или углеродистой стали. Он состоит из стержня двутсеврового сечения, верхней головки, нижней головки и крышки. В стержне шатуна при принудительном смазывании плавающего поршневого пальца (в основном у дизелей) сверлится сквозное отверстие — масляный канал.

Нижнюю головку, как правило, делают разъемной в плоскости, перпендикулярной к оси шатуна. В тех случаях, когда нижняя головка имеет значительные размеры и превышает диаметр цилиндра.

Читайте также:  Что можно сделать из двигателя газонокосилки

Крышка шатуна изготовляется из той же стали, что и шатун, и обрабатывается совместно с нижней головкой, поэтому перестановка крышки с одного шатуна на другой не допускается. На шатунах и крышках с этой целью делают метки, чтобы обеспечить высокую точность при сборке нижней головки шатуна, его крышку фиксируют шлифованными поясками болтов, которые затягивают гайками и стопорят шклинтами или шайбами. В нижнюю головку устанавливают шатунный подшипник в виде тонкостенных стальных вкладышей, которые с внутренней стороны покрыты слоем антифрикционного сплава.

От осевого смещения и провертывания вкладыши удерживаются выступами (усиками), которые входят в канавки нижней головки шатуна и его крышки. В нижней головке шатуна и во вкладыши делается отверстие для периодического выбрызгивания масла на зеркало цилиндра или на распределительный вал.

Для лучшей уравновешенности кривошипно-шатунного механизма разница в масле шатунов не должна превышать 6 — 8 г. В V-образных двигателях на каждой шатунной шейке коленчатого вала расположены два шатуна. В этих двигателях для правильной сборки шатуннопоршневой группы поршни и шатуны устанавливают строго по меткам.

Коленчатый вал воспринимает силу давления газов на поршень и силы инерции возвратно-поступательно движущихся масс кривошипно-шатунного механизма.

Силы, передающиеся поршнями на коленчатый вал, создают крутящий момент, который при помощи трансмиссии передается на колеса автомобиля.

Коленчатый вал изготовляют штамповкой из легированных сталей или отливают из высокопрочных чугунов.

Коленчатый вал состоит из коренных и шатунных шеек, противовесов, заднего конца с отверстием для установки шарикоподшипника ведущего вала коробки передач и фланца для крепления маховика, переднего конца, на котором установлен хроповик пусковой рукоятки и шестерня газораспределения, шкива привода вентилятора, жидкостного насоса и генератора.

Шатунные шейки со щеками образуют кривошипы. Для разгрузки коренных подшипников от центробежных сил служат противовесы, которые изготовляют за одно целое со щеками, имеющими каналы для подвода масла, или прикрепляют к ним болтами. Если с обеих сторон шатунной шейки расположены коренные шейки, то такой коленчатый вал называется полнопорным.

В щеках коленчатого вала просверлены наклонные каналы для подвода масла от коренных подшипников к масляным полостям, выполненных в шатунных шейках в виде каналов большого диаметра, закрываемых резьбовыми заглушками. Эти полости являются грязеуловителями, в которых под действием центробежных сил при вращениии коленчатого вала собираются продукты изнашивания, содержащиеся в масле.

Гнезда в блоке цилиндров под коренные подшипники и их крышки растачивают совместно, поэтому при сборке двигателя их необходимо устанавливать по меткам только на свои места. Тонкостенные вкладыши коренных подшипников покрыты таким же антифрикционным сплавом, что и вкладыши шатунных подшипников, и отличаются от последних только размерами. Широкое использование триметаллических сталеалюминиевых и сталесвинцовых вкладышей связано с тем, что слой антифрикционного покрытия обладает хорошими противоударными свойствами и повышенной прочностью. От продольного смещения и проворачивания вкладыши удерживаются выступами, входящие в соответствующие пазы в гнездах блока и их крышках.

Осевые нагрузки коленчатого вала в большинстве карбюраторных двигателей воспринимаются упорной шайбой и стальными упорными кольцами, залитыми с внутренней стороны антифрикционным сплавом СОС-6-6, содержащим свинец, олово и сурьму.

Осевые нагрузки коленчатого вала дизелей воспринимаются двумя парами упорных полуколец из бронзы или сталеалюминия, установленных в выточках задней коренной опоры.

Маховик служит для обеспечения вывода поршней из мертвых точек, более равномерного вращения коленчатого вала многоцилиндрового двигателя при его работе на режиме холостого хода, облегчение пуска двигателя, снижение кратно-временных перегрузок при трогании автомобиля с места и передачи крутящего момента агрегатам трансмиссии на всех режимах работы двигателя. Маховик изготовляют из чугуна и динамически балансируют в сборе с коленчатым валом. На фланце маховика центрируются в строго определенном положении с помощью штифтов или болтов, которыми он крепится к фланцу.

На обод маховика напрессован зубчатый венец, предназначенный для вращения коленчатого вала стартером при пуске двигателя. На торце или ободе маховика многих двигателей наносят метки, по которым определяют в. м. т. поршня первого цилиндра при установке зажигания (у карбюраторных двигателей) или момента начала подачи топлива (у дизелей).

ривошипно-шатунный механизм состоит из следующих основных частей: цилиндра 7, поршня 6 с кольцами 5, шатуна 3 с подшипником 2, поршневого пальца 4, коленчатого вала 10 с противовесами 9, вращающегося в подшипниках 1, и маховика 8.

Детали кривошипно-шатунного механизма воспринимают большое давление (до 6-8 МПа) газов, возникающих при сгорании топлива в цилиндрах, а некоторые из них, кроме того, работают в условиях высоких температур (350° и выше) и при большой частоте вращения коленчатого вала (свыше 2000 мин»‘). Чтобы детали могли удовлетворительно работать длительное время (не менее 8-9 тыс. часов) в таких тяжелых условиях, обеспечивая работоспособность двигателя, их изготавливают с большой точностью из высококачественных прочных металлов и их сплавов, а детали из черных металлов (сталь, чугун), кроме того, подвергают термической обработке (цементации, закалке).

Рисунок 2. Кривошипно-шатунный механизм: 1 — коренной подшипник; 2 — шатунный подшипник; 3 — шатун; 4 — поршневой палец; 5 — поршневые кольца; 6 — поршень; 7 — цилиндр; 8 — маховик; 9 — противовес; 10 — коленчатый вал

В двигателе внутреннего сгорания топливо сгорает внутри цилиндров и тепловая энергия, выделяющаяся при этом, преобразуется в механическую работу.

Рабочим циклом называется совокупность процессов, периодически повторяющихся в определенной последовательности в цилиндре. В четырехтактном двигателе рабочий цикл совершается за четыре такта: впуск, сжатие, рабочий ход (сгорание и расширение) и выпуск, или, иначе говоря, за два оборота коленчатого вала.

Такт — это процесс, происходящий в цилиндре за один ход поршня.

Ход поршня S — путь, проходимый поршнем от одной мертвой точки до другой.

Мертвыми точками называются крайние верхнее и нижнее положения поршня, где его скорость равна нулю. Верхняя мертвая точка сокращенно обозначается в. м. т. , нижняя мертвая точка — н. м. т.

Рабочий объем цилиндра Vр — объем, освобождаемый поршнем при движении от в. м. т. до н. м. т.

Литраж — рабочий объем всех цилиндров двигателя.

Объем камеры сгорания Vc — объем, образующийся над поршнем, когда последний находится в в. м. т.

Полный объем цилиндра Vп — это его рабочий объем плюс объем камеры сгорания.

Индикаторная мощность — мощность, развиваемая расширяющимися газамитпри сгорании топлива в цилиндрах двигателя (без учета потерь).

Эффективная мощность — мощность, получаемая на маховике коленчатого вала. Она на 10 — 15% меньше индикаторной из-за потерь на трение в двигателе и приведение в движение его вспомогательных механизмов и приборов.

Литровой мощностью называется наибольшая эффективная мощность, получаемая с одного литра рабочего объема (литража) цилиндрического двигателя.

Рабочий цикл четырехтактного двигателя происходит следующим образом.

Первый такт — впуск. При движении поршня от в. м. т. (вниз) вследствие увеличения объема в цилиндре создается разрежение, под действием которого из карбюратора через открывающийся впускной клапан в цилиндр поступает горючая смесь (паров бензина с воздухом). В цилиндре горючая смесь смешивается с оставшимися в нем от предыдущего рабочего цикла отработавшими газами и образует рабочую смесь.

Второй такт — сжатие. Поршень движется вверх, при этом оба клапана закрыты. Так как объем в цилиндре уменьшается, то происходит сжатие рабочей смеси.

Третий такт — рабочий ход. В конце такта сжатия рабочая смесь воспламеняется электрической искрой и быстро сгорает (за 0, 001 — 0, 002 с). При этом происходит выделение большого количества тепла и газы, расширяясь, создают сильное давление на поршень, перемещая его вниз. Сила давления газов от поршня передается через поршневой палец и шатун на коленчатый вал, создавая на нем определенный крутящий момент. Таким образом, во время рабочего хода происходит преобразование тепловой энергии в механическую работу.

Четвертый такт — выпуск. После совершения полезной работы поршень движется вверх и выталкивает отработавшие газы наружу через открывающийся выпускной клапан.

Из рабочего цикла двигателя видно, что полезная работа совершается только в течение рабочего хода, а остальные три такта являются вспомогательными. Для равномерности вращения коленчатого вала на его конце устанавливают маховик, обладающий значительной массой. Маховик получает энергию при рабочем ходе и часть ее отдает на совершение вспомогательных тактов.

В целях получения большей мощности и равномерного вращения коленчатого вала двигатели делают многоцилиндровые. Так, в четырехцилиндровом двигателе за два оборота коленчатого вала получается не один, а четыре рабочих хода.

Техническое обслуживание и ремонт. Основные неисправности. Причины. Признаки Неисправности КШМ.

Снижение мощности двигателя, повышенный расход масла, топлива, дымление и увеличение стуков при работе двигателя — вот основные неисправности КШМ.

Признаки: двигатель не развивает полной мощности.

Причины: снижена компрессия из-за износа гильз цилиндров, поршней, поломки или пригорания поршневых колец.

Признаки: расход масла и топлива, дымление двигателя.

Причины: изнашивание деталей шатунно-поршневой группы, поломка поршневых колец, закоксование поршневых колец, в канавках, прорезей в малосъемных кольцах, отверстий в канавке под малосъемные кольца.

Признаки: стук коленчатого вала.

Причины: вызывается либо недостаточными давлением и подачей масла, либо недопустимо увеличившимися зазорами между шейками коленчатого вала и вкладышами коренных и шатунных подшипников из-за изнашивания этих деталей.

Признаки: стуки поршней и поршневых пальцев.

Причины: свидетельствует об изнашивании деталей шатунно-поршневой группы

Способы устранения неисправности, диагностические, регулировочные и очистительные работы

При значительных изнашиваниях и поломках детали КШМ восстанавливают или заменяют. Эти работы, как правило, выполняют, отправляя в централизованный ремонт.

Закоксование поршневых колец в канавках можно устранить без разборки двигателя. Для этого в конце рабочего дня, пока двигатель не остыл, в каждый цилиндр через отверстие для свечей зажигания заливают по 20 г смеси равных частей денатурированного спирта и керосина. Утром двигатель пускают и после его работы 10-15 мин на холодном ходу останавливают и заменяют масло.

Диагностирование кривошипно-шатунного механизма производится на посту Д-2. При выявлении пониженных тяговых качествах, замеренных во всех цилиндрах автомобиля на стенде тягово-экономических качеств.

Компрессию двигателя определяют при вывернутых свечах у прогретого двигателя при t = 70-80С и полностью открытых воздушных и дроссельных заслонках. Установив резиновый наконечник компрессометра в отверстие свечи проверяемого цилиндра, проворачиваем коленчатый вал стартером на 10-15 оборотов и записываемпоказания монометра. Компрессия должна быть для исправного автомобиля 0, 75 — 0, 80 мПа. Разница в показателях между цилиндрами не должна быть более 0, 07 — 0, 1 мПа.

Читайте также:  Сапун дизельного двигателя что это такое

Газораспределительный механизм (сокращенное наименование — ГРМ) предназначен для обеспечения своевременной подачи в цилиндры двигателя воздуха или топливно-воздушной смеси (в зависимости от типа двигателя) и выпуска из цилиндров отработавших газов. Данные функции реализуются за счет своевременного открытия и закрытия клапанов.

На самых распространенных четырехтактных поршневых двигателях внутреннего сгорания применяются клапанные газораспределительные механизмы, поэтому устройство ГРМ рассмотрено именно на его примере.

Газораспределительный механизм объединяет клапаны с приводом и распределительный вал с приводом.

Клапаны непосредственно осуществляют подачу в цилиндры воздуха (топливно-воздушной смеси) и выпуск отработавших газов. Клапан состоит из тарелки и стержня. На современных двигателях клапаны располагаются в головке блока цилиндров, а место соприкосновения клапана с ней называется седлом. Различают впускные и выпускные клапаны. Для лучшего наполнения цилиндров диаметр тарелки впускного клапана, как правило, больше, чем выпускного.

Клапан удерживается в закрытом состоянии с помощью пружины, а открывается при нажатии на стержень. Пружина закреплена на стержне с помощью тарелки пружины и сухарей. Клапанные пружины имеют определенную жесткость, обеспечивающую закрытие клапана при работе. Для предупреждения резонансных колебаний на клапанах может устанавливаться две пружины меньшей жесткости, имеющие противоположную навивку.

Клапаны изготавливаются из сплавов металлов. Рабочая кромка тарелки клапана усилена. Стержень впускного клапана, как правило, полнотелый, а выпускного — полый, с натриевым наполнением для лучшего охлаждения.

Большинство современных ДВС имеют по два впускных и два выпускных клапана на каждый цилиндр. Помимо данной схемы ГРМ используется: двухклапанная схема (один впускной, один выпускной), трехклапанная схема (два впускных, один выпускной), пятиклапанная схема (три впускных, два выпускных). Использование большего числа клапанов ограничивается размером камеры сгорания и сложностью привода.

Открытие клапана осуществляется с помощью привода, обеспечивающего передачу усилия от распределительного вала на клапан. В настоящее время применяются две основные схемы привода клапанов: гидравлические толкатели и роликовые рычаги.

Роликовые рычаги в качестве привода клапанов более предпочтительны, т. к. имеют меньшие потери на трение и меньшую массу. Роликовый рычаг (другие наименования — коромысло, рокер, от английского «коромысло») одной стороной опирается на стержень клапана, другой — на гидрокомпенсатор (в некоторых конструкциях на шаровую опору). Для снижения потерь на трение место сопряжения рычага и кулачка распределительного вала выполнено в виде ролика.

С помощью гидрокомпенсаторов в приводе клапанов реализуется нулевой тепловой зазор во всех положениях, обеспечивается меньший шум и мягкость работы. Конструктивно гидрокомпенсатор состоит из цилиндра, поршня с пружиной, обратного клапана и каналов для подвода масла. Гидравлический компенсатор, расположенный непосредственно на толкателе клапана, носит название гидравлического толкателя (гидротолкателя).

Распределительный вал обеспечивает функционирование газораспределительного механизма в соответствии с принятым для данного двигателя порядком работы цилиндров и фазами газораспределения. Он представляет собой вал с расположенными кулачками. Форма кулачков определяет фазы газораспределения, а именно моменты открытия-закрытия клапанов и продолжительность их работы. Существенное повышение эффективности ГРМ, а, следовательно, и улучшение характеристик двигателя дают различные системы изменения фаз газораспределения.

На современных двигателях распределительный вал расположен в головке блока цилиндров. Он вращается в подшипниках скольжения, выполненных в виде опор. Используются как разъемные опоры, так и неразъемные (вал вставляется с торца). В некоторых двигателях в опорах используются тонкостенные вкладыши. От перемещения в продольном направлении распределительный вал удерживается упорным подшипником, который располагается со стороны привода вала. К опорам распределительного вала по индивидуальным каналам и под давлением подается масло из системы смазки.

Различают две схемы расположения распределительного вала в головке блока цилиндров:

· одновальная — SOHC (Single OverHead Camshaft);

· двухвальная — DOHC (Double OverHead Camshaft).

В связи с широким применением четырех клапанов на один цилиндр предпочтение отдается двухвальной схеме ГРМ (один распределительный вал обеспечивает привод впускных клапанов, другой вал — выпускных). В V-образном двигателе устанавливается четыре распределительных вала — по два на каждый ряд цилиндров.

Распределительный вал приводится в действие от коленчатого вала с помощью привода, который осуществляет его вращение в два раза медленнее коленчатого вала (за один цикл работы двигателя конкретный клапан открывается только один раз). В качестве привода распределительного вала используются ременная, цепная и зубчатая передачи.

Ременная и цепная передачи приводят в действие распределительный вал, расположенный в головке блока цилиндров. Зубчатая передача вращает, как правило, распределительный вал в блоке цилиндров. В обиходе зубчатая передача привода распределительного вала носит название «гитара» (по форме двух соединенных шестерен).

Ременная и цепная передачи имеют как достоинства, так и недостатки, поэтому в ГРМ применяются на равных. Цепной привод более надежный и, соответственно, долговечный. Но цепь тяжелее ремня, поэтому требует дополнительных устройств для натяжения (натяжные ролики, ) и гашения колебаний (успокоители). Натяжные ролики обеспечивают натяжение с помощью пружины и за счет давления масла в системе смазки. В качестве цепного привода распределительного вала используются одно- и двухрядные роликовые цепи. Постепенно их вытесняют зубчатые цепи, которые взаимодействуют с зубьями звездочки щеками особой формы. Помимо распределительного вала с помощью цепи может осуществляться привод масляного насоса, балансирных валов.

Ременной привод не требует смазки, поэтому на шкивы устанавливается открыто. Вместе с тем, ремень в сравнении с цепью имеет ограниченный ресурс. Правда этот ресурс не такой уж и малый. Современные ремни «пробегают» 100-150 тыс. км. В качестве ременного привода распределительного вала широко используются зубчатые ремни. Выступы на внутренней поверхности зубчатого ремня входят в зацепление с зубьями на шкивах (шестернях), тем самым обеспечивается вращение. На двигателях используется эллиптическая шестерня привода зубчатого ремня, что позволяет снизить тяговые усилия и крутильные колебания распределительного вала. Наряду с распределительным валом зубчатый ремень может приводить масляный насос, насос охлаждающей жидкости, топливный насос высокого давления.

Наружными признаками неисправности ГРМ являются:

· Хлопки в выпускном и впускном трубопроводах;

· Падение мощности мотора.

Все перечисленные неисправности ГРМ могут возникнуть из-за плохого прилегания к седлам клапанов. Плохое прилегание к седлу клапана происходит в связи с отложением нагара на седлах и клапанах, формированием раковин на рабочих поверхностях, поломкой клапанных пружин, короблением головок, отсутствием зазора между коромыслом (рычагом) и стержнем клапана. Уменьшение мощности мотора и резкие металлические звуки могут возникать вследствие недостаточного открытия клапанов. Данная неисправность ГРМ возникает в связи с большим тепловым зазором между коромыслом (рычагом) и стержнем клапана или из-за отказа гидрокомпенсаторов.

К неисправностям ГРМ также можно отнести износ шестерен коленчатого вала и распределительного вала, осей и втулок коромысел, направляющих втулок клапанов, а также увеличенное смещение по своей оси распределительного вала.

Список использованной литературы

1. Амбарцумян В. В. , Носов В. Б. Экологическая безопасность автомобильного транспорта. «Научтехлитиздат», Москва, 1999

2. Беляев С. В. Моторные масла и смазка двигателей: Учебное пособие. — Петрозаводский гос. ун-т. Петрозаводск, 1993

3. Грамолин А. В., Кузнецов А. С. Топливо, масла, смазки, жидкости и материалы для эксплуатации и ремонта автомобилей. — М.: Машиностроение, 1995

4. Евгеньев И. Е. , Каримов Б. Р. Автомобильные дороги и окружающая среда. Учеб. Москва, 1997

5. Карагодин В. И. , Шестопалов С. К. Слесарь по ремонту автомобилей: Практическое пособие. 2-е изд. , перер. и доп. — М.: Высшая школа, 1990

6. Круглов С. М. Справочник автослесаря по техническому обслуживанию и ремонту легковых автомобилей. — М. : Высшая школа, 1995

7. Протасов В. Ф. , Молчанов А. В. Экология, здоровье и природопользование в России. Москва, «Финансы и статистика», 1995

8. Руководство по эксплуатации автомобилей ВАЗ-2108, -21081, -21083, -21083-20, -2109, -21091, -21093, -21093-20, -21099. — М.: Легион, 1996

9. Спинов А. В. Системы впрыска бензиновых двигателей. — М. Машиностроение, 1995

10. Техническая эксплуатация автомобилей / Под ред. Е. С. Кузнецова. — 3-е изд. , перераб. и доп. — М. : Транспорт, 1991.

Размещено на Allbest.ru

Подобные документы

Назначение, устройство и принцип действия кривошипно-шатунного механизма. Возможные неисправности и методы их диагностики, техническое обслуживание. Характер износа стенок цилиндра. Охрана труда при проведении технического обслуживания механизма.

контрольная работа [25,9 K], добавлен 31.01.2016

Ремонт и техническое обслуживание автомобилей. Назначение, устройство, принцип работы кривошипно-шатунного механизма; основные признаки неисправности, диагностика, способы восстановления. Назначение инструмента и приспособлений, применяемых при ремонте.

курсовая работа [10,1 M], добавлен 05.01.2011

Составные части кривошипно-шатунного механизма (КШМ). Внешние признаки и соответствующие им неисправности КШМ. Назначение системы газораспределения, основные неисправности. Принцип работы системы охлаждения автомобиля. Классификация моторных масел.

реферат [33,4 K], добавлен 20.10.2010

Механизмы и системы двигателя автомобиля, техническое обслуживание. Назначение, устройство и работа кривошипно-шатунного механизма. Механизм газораспределения, его составные части. Назначение системы питания. Устройство системы смазки и охлаждения.

контрольная работа [6,0 M], добавлен 18.07.2010

Техническое обслуживание кривошипно–шатунного механизма. Возможные его неисправности и способы их устранения. Общие требования безопасности труда при техническом обслуживании и ремонте автомобилей. Проверка технического состояния деталей механизма.

курсовая работа [1,0 M], добавлен 15.05.2014

Назначение, устройство и работа газораспределительного механизма автомобиля. Основные неисправности ГРМ. Периодичность, перечень и трудоемкость выполнения работ. Виды технического обслуживания и последовательность ремонта двигателя внутреннего сгорания.

курсовая работа [553,8 K], добавлен 17.08.2016

Особенности устройства кривошипно-шатунного механизма двигателя ЯМЗ-236. Устройство деталей механизма газораспределения двигателя ЗИЛ-508.10. Типы форсунок, их преимущества и недостатки. Схема бесконтактно-транзисторного регулятора напряжения РР350.

курсовая работа [3,7 M], добавлен 12.01.2015

Назначение контрольно-измерительного инструмента, диагностического и технологического оборудования. Внешние проявления неисправностей деталей цилиндропоршневой группы. Диагностирование основных дефектов кривошипно-шатунного механизма и его ремонт.

курсовая работа [342,6 K], добавлен 12.09.2015

Назначение, общее устройство и работа механизмов двигателя. Основные неисправности, их признаки и причины. Автомобильные эксплуатационные материалы. Техническое обслуживание автомобилей. Виды ремонтных работ. Общие принципы диагностирования двигателя.

шпаргалка [1009,4 K], добавлен 05.12.2015

Назначение и устройство газораспределительного механизма Д-240. Возможные неисправности механизма, причины их возникновения. Диагностика, техническое обслуживание и ремонт Д-240. Проверка и регулировка зазоров. Охрана труда и техника безопасности.

контрольная работа [1,1 M], добавлен 14.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

Источник

Adblock
detector