Ракетный двигатель устройство принцип работы

Как работают ракетные двигатели?

Освоение космоса — самое удивительное из мероприятий, когда-либо проводимых человечеством. И большую часть удивления составляет сложность. Освоение космоса осложняется массой проблем, которые нужно решить и преодолеть. Например, безвоздушное пространство, проблема с температурой, проблема повторного входа в атмосферу, орбитальная механика, микрометеориты и космический мусор, космическая и солнечная радиация, логистика в условиях невесомости и другое. Но самая сложная проблема — это просто оторвать космический корабль от земли. Здесь не обойтись без ракетного двигателя, поэтому в этой статье мы рассмотрим именно это изобретение человечества.

С одной стороны, ракетные двигатели настолько просто устроены, что за небольшую копейку вы сможете построить ракету самостоятельно. С другой стороны, ракетные двигатели (и их топливные системы) настолько сложны, что доставкой людей на орбиту, по сути, занимаются только три страны мира.

Когда люди задумываются о двигателе или моторе, они думают о вращении. К примеру, бензиновый двигатель автомобиля производит энергию вращения, чтобы двигать колеса. Электродвигатель производит энергию вращения для движения вентилятора или диска. Паровой двигатель делает то же самое, чтобы вращать паровую турбину.

Ракетные двигатели принципиально отличаются. Ракетные двигатели — это реактивные двигатели. Основной принцип движения ракетного двигателя — это знаменитый принцип Ньютона, «на каждое действие есть равное противодействие». Ракетный двигатель выбрасывает массу в одном направлении, а благодаря принципу Ньютона движется в противоположном направлении.

Понятие «выбрасывания массы и движения по принципу Ньютона» может быть сложно понять с первого раза, потому что ничего не разобрать. Ракетные двигатели, кажется, работают с огнем, шумом и давлением, а не «толкают вещи». Давайте рассмотрим несколько примеров, чтобы получить более полную картину реальности.

Если вы когда-нибудь стреляли из оружия, желательно из дробовика 12-го калибра, то вы знаете, что такое отдача. Когда вы стреляете из оружия, оно отдает вам в плечо, достаточно ощутимо. Этот толчок и есть реакция. Дробовик выпуливает около 30 грамм металла в одном направлении со скоростью больше 1000 км/ч, и ваше плечо чувствует отдачу. Если бы вы стояли на скейтборде или были в роликах, то выстрел из дробовика сработал бы как реактивный двигатель, и вы покатились бы в противоположном направлении.

Если вы когда-либо наблюдали за работой пожарного шлага, вы наверняка заметили, что его достаточно сложно удержать (иногда пожарные вдвоем и втроем его держат). Шланг работает как ракетный двигатель. Он выбрасывает воду в одном направлении, а пожарные используют свою силу, чтобы противостоять реакции. Если они упустят рукав, он будет метаться повсюду. Если бы пожарные стоял на скейтбордах, пожарный рукав разогнал бы их до приличной скорости.

Когда вы надуваете воздушный шарик и выпускаете его, он летает по всей комнате, испуская воздух, — так работает ракетный двигатель. В данном случае вы выпускаете молекулы воздуха из шара. Многие считают, что молекулы воздуха ничего не весят, но это не так. Когда вы выпускаете их из шарика, шарик летит в противоположном направлении.

Еще один сценарий, который поможет объяснить действие и противодействие, — это космический бейсбол. Представьте, что вы вышли в скафандре в космос недалеко от своего космического судна, и у вас в руке бейсбольный мяч. Если вы его бросите, ваше тело среагирует в противоположном направлении от мяча. Допустим, он весит 450 гр, а ваше тело вместе со скафандром весит 45 кг. Вы бросаете бейсбольный мяч весом почти в полкило со скоростью 34 км/ч. Таким образом, вы ускоряете полукилограммовый мяч своей рукой так, что он набирает скорость 34 км/ч. Ваше тело реагирует в противоположном направлении, но весит в 100 раз больше мяча. Таким образом, оно принимает одну сотую ускорения мяча, или 0,34 км/ч.

Читайте также:  Давление масла в двигателе tahoe

Если вы хотите создать большую тягу от своего бейсбольного мяча, у вас есть два варианта: увеличить его массу или увеличить ускорение. Вы можете бросить мячик потяжелее или бросать мячи один за другим, либо бросить мяч быстрее. Но на этом все.

Ракетный двигатель, как правило, выбрасывает массу в форме газа под высоким давлением. Двигатель выбрасывает массу газа в одном направлении, чтобы получить реактивное движение в противоположном направлении. Масса идет от веса топлива, которое сгорает в двигателе ракеты. Процесс горения ускоряет массы топлива так, что они выходят из сопла ракеты на высокой скорости. Тот факт, что топливо превращается из твердого тела или жидкости в процессе сгорания, никак не меняет его массу. Если вы сожжете килограмм ракетного топлива, вы получите килограмм выхлопа в виде горячих газов на высокой скорости. Процесс сжигания ускоряет массу.

«Сила» ракетного двигателя называется тягой. Тяга измеряется в ньютонах в метрической системе и «фунтах тяги» в США (4,45 ньютона тяги эквивалентны одному фунту тяги). Фунт тяги — это количество тяги, необходимое для удержания 1-фунтового объекта (0,454 кг) неподвижным относительно силы тяжести Земли. Ускорение земной гравитации составляет 9,8 м/с².

Одной из забавных проблем ракет является то, что топливный вес, как правило, в 36 раз больше полезной нагрузки. Потому что помимо того, что двигателю нужно поднимать вес, этот же вес и способствует собственному подъему. Чтобы вывести крошечного человека в космос, нужна огромная ракета и много-много топлива.

Обычная скорость для химических ракет составляет от 8000 до 16 000 км/ч. Топливо горит около двух минут и вырабатывает 3,3 миллиона фунтов тяги на старте. Три основных двигателя космического шаттла, например, сжигают топливо в течение восьми минут и вырабатывают около 375 000 фунтов тяги каждый в процессе горения.

Далее мы рассмотрим топливные смеси твердотопливных ракет.

Твердотопливные ракеты: топливная смесь

Ракетные двигатели на твердом топливе — это первые двигатели, созданные человеком. Они были изобретены сотни лет назад в Китае и используются до сих пор. О красных бликах ракет поется в национальном гимне (написанном в начале 1800-х) — имеются в виду небольшие боевые ракеты на твердом топливе, используемые для доставки бомб или зажигательных устройств. Как видите, такие ракеты существуют уже давненько.

Идея, которая лежит в основе ракеты на твердом топливе, довольно проста. Вам нужно создать нечто, что будет быстро гореть, но не взрываться. Как вы знаете, порох не подходит. Оружейный порох на 75 % состоит из нитрата (селитры), 15 % угля и 10 % серы. В ракетном двигателе взрывы не нужны — нужно, чтобы топливо горело. Можно изменить смесь до 72 % нитрата, 24 % угля и 4 % серы. Вместо пороха вы получите ракетное топливо. Эта смесь будет быстро гореть, но не взорвется, если правильно ее загрузить. Вот типичная схема:

Твердотопливные ракеты: конфигурации

Читая описание для современных твердотопливных ракет, часто можно найти вот такое:

«Ракетное топливо состоит из перхлората аммония (окислитель, 69,6 % по весу), алюминия (топливо, 16 %), оксида железа (катализатор, 0,4 %), полимера (связующей смеси, удерживающей топливо вместе, 12,04 %) и эпоксидный отверждающий агент (1,96 %). Перфорация выполнена в форме 11-конечной звезды в переднем сегменте двигателя и в форме дважды усеченного конуса в каждом из остальных сегментов, включая конечный. Такая конфигурация обеспечивает высокую тягу при розжиге, а затем уменьшает тягу примерно на треть спустя 50 секунд после старта, предотвращая перенапряжение аппарата во время максимального динамического давления». — NASA

Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:

Твердотопливные двигатели обладают тремя важными преимуществами:

  • простота
  • низкая стоимость
  • безопасность
Читайте также:  Газон некст какой двигатель ставят

Но есть и два недостатка:

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Жидкотопливные ракеты

В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.

Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.

  • Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
  • Бензин и жидкий кислород (первые ракеты Годдарда).
  • Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
  • Спирт и жидкий кислород (использовались в немецких ракетах V2).
  • Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).

Будущее ракетных двигателей

Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе — это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.

Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо — газообразный азот под давлением выбрасывается из резервуара через сопло.

Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать электромагнитные двигатели и ждать, что там еще выкинет Элон Маск со своим SpaceX.

Источник

Как устроен реактивный двигатель

Реактивный двигатель – так называемое устройство, предназначенное для передвижения, как правило, в воздухе этого же устройства и, как правило, сопряженное совместно с каким-либо агрегатом (аппаратом для полетов).

Перемещение двигателя производится за счет силы тяги, называемой реактивной, которая возникает при превращении энергии разного рода веществ или топливв (электроэнергии, химической, ядерной). Реактивная сила отдающих свою энергию истекающих струй и образующаяся на выходном сопле устройства, способна приводить в движение весь аппарат без помощи посторонних узлов и механизмов.

Саму теорию практического применения энергии реактивной силы, которая бы справилась с притяжением Земли, предложил ученый-инженер из России Циолковский К.Э. Однако ученому понадобилось достаточно много времени, в том числе политической смены власти, чтобы его научные исследования были приняты в практическом использовании.


Рисунок 1 – Общий снимок реактивного двигателя, который устанавливается в самолетах

Принцип работы реактивного двигателя

В общем виде принцип работы реактивного двигателя практически аналогичен принципу работы ядерного двигателя. Для первого применяется химическая движущая энергия, для вотрого же — энергия ядерных элементов.

Многие из нас, особенно мужская половина населения (на службе в армии, на охоте, в тире, на полигоне), стреляли из огнестрельного оружия и, соответственно, чувствовали на себе действие реактивной силы в виде отдачи. Этот же принцип, основанный на законе сохранения импульса, применяется в реактивных двигательных установках, в которых главным двигательным веществом является топливо.

Если рассмотреть вариант реактивного двигателя, функционирующего на керосиновом топливе, то в смесительном отсеке агрегата, где топливо смешивается с окислителем и происходит горение состав, выпускается огромнейшая энергия в виде тепла и мгновенного повышения давления в 10-20-30 и более раз выше атмосферного.

Читайте также:  При регулировке клапанов на 402 двигателе какие зазоры должны быть

При постоянном поступлении топлива и окислителя (воздуха, жидкого кислорода, азотной кислоты) выходная кинетическая энергия рабочей отработанной смеси будет обладать высоким движущим импульсом. И истекающие струи через «Лавальское» сопло агрегата в окружающее пространство будут приводить в движение установку за счет выталкивающего момента.


Рисунок 2 – Иллюстрационное изображение работы реактивного двигателя

Как работает реактивный двигатель


Рисунок 3 – Схема работы реактивного двигателя

Воздух из окружающего пространства поступает на всас вентиляторов, которые подают его далее лопатки вращающегося с очень высокой скоростью турбокомпрессора. При этом поступающий воздух выполняет 2 функции:

  • окислитель для сгорания топлива;
  • охладитель агрегата.

В лопаточном аппарате турбокомпрессора воздух крепко уплотняется и под высоким давлением (от 3 МПа) подается в топливную смесительную камеру реактивного двигателя. Из рисунка 3 видно, что камера сгорания устроена таким образом, что смешение воздуха производится в несколько ступеней — на входе и в самой камере. Сюда же подводится топливо.

Хорошо перемешанная и в достаточном количестве обогащенная смесь воспламеняется, и в результате сгорания образуется тепловая энергия с выделением огромного объема газов. Последние приводят во вращение турбину горячей части двигателя, привод которой служит приводом турбокомпрессора.

В отдельных моделях реактивных двигателей турбины на выходе не монтируются. По большей части данное исполнение применяется в конструкции и принципе работы ракетного двигателя, где продукты сгорания после камеры попадают на выходные сопла.

Покидая горячую ступень, газы во всех реактивных аппаратах проходят через сопла. Эти элементы отличаются по своим конструкциям для разных моделей реактивных агрегатов и представляют собой «трубу», которая сначала сужается, а к выходу газов увеличивается в диаметре. За счет такой конструкции отработавшие газы увеличивают свою скорость до сверхзвука и образуют реактивную силу.

Температура горения в «сердце» реактивного агрегата достигает 2500°С, поэтому конструктивно требовательны в постоянстве охлаждения.

Устройство реактивного двигателя

С первого взгляда кажется устройство конструкции реактивной установки достаточно простым, однако характеристики использования топлива и его сгорания требуют применения высокопрочных материалов.

На рисунке 4 изображено устройство реактивного двигателя.


Рисунок 4 — Устройство реактивного двигателя

Из рисунка 4 видно, что на входе в аппарат установлен вентилятор всасывающий воздух в двигатель. Вентилятор состоит из мощных и объемных по размеру лопастей, которые, как правило, изготавливаются из титана. Далее вслед за вентилятором установлен многоступенчатый турбокомпрессор для подачи воздуха непосредственно в камеру, где происходит сгорание рабочего тела.

После воспламенения и сгорания поток реактивных газов направляется на рабочие лопатки турбоагрегата, чем и приводят его во вращение. На валу турбины горячей ступени имеется жесткая связь с компрессором, который вращается от работы турбины.

Отработанный газовый вихрь через сопла набирает реактивную скорость и покидает полость аппарата. Для предотвращения перегрева и расплавки на сопла подводится охлаждающий воздух от турбокомпрессора по специальным каналам в корпусе двигателя.

Разновидности реактивных двигателей

Существует несколько реактивных двигателей отличающихся по своему принципу работы и подобию. Так, принцип работы ядерного двигателя, в основу которого положена синтезная реакция разложения химического элемента, к примеру — урана.

Данный элемент помещается в реактор. Туда же подводится при помощи турбонасосов рабочее вещество. Распылительными форсунками производится его рассеивание по рабочей камере, в которой происходит контакт с химическим ураном. В результате выделяется энергия большой силы, которая и является движущей.

Не смотря на всю конфиденциальность и секретность информации о ядерном вооружении стран во всем мире, самую большую опасность представляет крылатая ракета, работающая на ядерном топливе.

Системы противовоздушной обороны настолько совершенны, что обмануть простыми полетами и маневрами уже не так-то просто. В этом случае и выступает на передний план ядерный двигатель. Увы, принцип работы ядерного двигателя для крылатой ракеты недоступен и, вряд ли, когда-нибудь будет раскрыт для общественности.

Источник

Adblock
detector