Построение механической характеристики для асинхронного двигателя

Расчет и построение механических характеристик асинхронного двигателя

Асинхронные двигатели получили широкое распространение благодаря простоте своей конструкции и высокой надежности.

При подаче на обмотки статора напряжений, сдвинутых по фазе ни 120°, по обмоткам протекают токи, создается круговое вращающее магнит­ное поле, пересекающее обмотки ротора и наводящее в них ЭДС.

Так как об­мотка ротора имеет замкнутую электрическую цепь, в ней под действием ЭДС возникает ток. При взаимодействии роторных токов с вращающимся магнитным полем статора создается вращающий электромагнитный момент на валу электродвигателя. Под действием этого момента ротор вращается и сторону вращающегося магнитного поля статора, причем частота вращения ротора двигателя всегда меньше частоты вращения магнитного поля статора.

Частота вращения магнитного поля находится в строгой зависимости и от частоты f1подводимого напряжения сети и числа пар полюсов pдвигателя:

(4.1)

где f1 частота питающей сети;

p — число пар полюсов.

Одним из показателей, характеризующих работу асинхронного двига­теля, является скольжение ротора, под которым понимается отношение

(4.2)

где n1 частота вращения магнитного поля статора;

n2 — частота вращения ротора электродвигателя;

w1 – угловая скорость магнитного поля статора;

w2 — угловая скорость ротора электродвигателя.

При выводе уравнения механической характеристики асинхронного двигателя необходимо обратиться к упрощенной схеме замещения (см. рис. 4.1).

Рисунок 4.1 – Упрощенная схема замещения асинхронного электродвигателя

В соответствии с приведенной схемой находим выражение для при­веденного вторичного тока:

, (4.3)

где R1, R2 — соответственно первичное и вторичное приведенные активные сопротивления;

R , X активное и реактивное сопротивление контура намагничивания;

X1, X2 -первичное и вторичное приведенное сопротивление рассеяния;

S — скольжение двигателя.

Вращающий момент асинхронного двигателя может быть определен из выражения потерь:

(4.4)

(4.5)

Подставляя значение I2в (4.5), получаем уравнение механической характеристики асинхронного двигателя:

(4.6)

Из выражения (4.6) видно, что угловую скорость вращения асинхронного двигателя можно регулировать изменением напряжения на зажимах двигателя, введением добавочного сопротивления в цепь статора или ротора, а если обратиться к выражению (4.1), то становятся очевидными еще два способа регулирования угловой скорости, а именно: изменением числа пар полюсов и изменением частоты питающей сети.

Использование уравнения (4.6) для практических расчетов весьма за­труднительно, поэтому в практических расчетах пользуются формулой Клосса:

(4.7)

или общей формулой

(4.8)

Читайте также:  Как ведет себя самолет при отказавшем двигателе

где Мкр максимальный (критический) момент двигателя, Н*м;

Sкр скольжение, соответствующее максимальному моменту;

q — параметр, зависящий от конструктивных особенностей.

Максимальный (критический) момент двигателя Мкр определяется по номинальному моменту двигателя Мн и его перегрузочной способности mк:

(4.9)

Значение критического скольжения Sкр с достаточной степенью точ­ности может быть определено по соотношению

, (4.10)

где Sн — номинальное скольжение;

mк — кратность критического момента.

Параметр q рассчитывается по соотношению

(4.11)

(4.12)

где mп — кратность пускового момента.

Характерными точками механической характеристики асинхронного электродвигателя являются:

точка пуска с координатами w = 0; М = Мн;

точ­ка провала на пусковой ветви, угловая скорость, в которой w соответствует скольжению S = 0,8, М = Ммин;

критическая точка с координатами wкр и М = Мкр;

точка холостого хода, в ко­торой w = w1; М = 0 (см. рис. 4.2).

Участок механической характеристики в интервале угловых скоростей от w = w1 до w = wкр называется рабочей частью характеристики. В интер­вале угловых скоростей от w = wкр до w = 0 находится пусковой участок ме­ханической характеристики.

Рисунок 4.2 – Механическая характеристика асинхронного двигателя

Пример 4

Рассчитать и построить механическую характеристику асинхронного двигателя типа АИР56А2. Паспортные данные: Рн=0,18кВт; nн=2730 об/мин; hн=0,68; cos j = 0,78; ; .

Источник

Построение механической характеристики для асинхронного двигателя

Введение

Асинхронный двигатель (АД) — электрический двигатель, нашедший очень широкое применение в различных отраслях промышленности и сельского хозяйства. АД с короткозамкнутым ротором обладает особенностями, обуславливающими его широкое распространение: простота в изготовлении, а это означает низкую начальную стоимость и высокую надежность; высокая эффективность вместе с низкими затратами на обслуживание приводят в итоге к низким общим эксплуатационным расходам; возможность работы непосредственно от сети переменного тока.

Режимы работы асинхронного электродвигателя

Двигатели с короткозамкнутым ротором — асинхронные машины, скорость которых зависит от частоты питающего напряжения, числа пар полюсов и нагрузки на валу. Как правило, при поддержании постоянного напряжения питания и частоты, если игнорируется изменение температуры, момент на валу будет зависеть от скольжения.

Вращающий момент АД можно определить по формуле Клосса:

, (1)

где , — критический момент, — критическое скольжение.

Кроме двигательного режима асинхронный двигатель имеет ещё три тормозных режима: а) генераторный тормозной с отдачей энергии в сеть; б) торможение противовключением; в) динамическое торможение.

Читайте также:  Назначение и схема работы газораспределительного механизма двигателя

При положительном скольжении машина с короткозамкнутым ротором будет действовать как двигатель, при отрицательном скольжении — как генератор. Из этого следует, что ток якоря двигателя с короткозамкнутым ротором будет зависеть только от скольжения. При выходе машины на синхронную скорость ток будет минимальным.

Генераторное торможение АД с отдачей энергии в сеть наступает при частоте вращения ротора, превышающей синхронную. В этом режиме электродвигатель отдаёт в сеть активную энергию, а из сети в электродвигатель поступает реактивная энергия, необходимая для создания электромагнитного поля.

Механическая характеристика для генераторного режима является продолжением характеристики двигательного режима во второй квадрант осей координат.

Торможение противовключением соответствует направлению вращения магнитного поля статора, противоположному вращению ротора. В этом режиме скольжение больше единицы, а частота вращения ротора по отношению к частоте вращения поля статора — отрицательна. Ток в роторе, а следовательно, и в статоре достигает большой величины. Для ограничения этого тока в цепь ротора вводят добавочное сопротивление.

Режим торможения противовключением наступает при изменении направления вращения магнитного поля статора, в то время как ротор электродвигателя и соединённые с ним механизмы продолжают вращение по инерции. Этот режим возможен также и в случае, когда поле статора не меняет направления вращения, а ротор под действием внешнего момента изменяет направление вращения.

В данной статье рассмотрим построение механической характеристики асинхронного двигателя в двигательном режиме.

Построение механической характеристики с помощью модели

Паспортные данные АД ДМТ f 011-6у1: Uф =220 — номинальное фазное напряжение, В; p=3 — число пар полюсов обмоток; n=880 — скорость вращения номинальная, об/мин; Pн=1400 — мощность номинальная, Вт; Iн=5,3 — ток ротора номинальный, А; η = 0.615 — к.п.д. номинальный, %; cosφ = 0.65 — cos(φ) номинальный; J=0.021 — момент инерции ротора, кг·м 2 ; Ki = 5.25 — кратность пускового тока; Kп = 2.36 — кратность пускового момента; Kм = 2.68 — кратность критического момента.

Для исследования эксплуатационных режимов асинхронных двигателей используются рабочие и механические характеристики, которые определяются экспериментально или рассчитываются на основе схемы замещения (СЗ). Для применения СЗ (рис.1) необходимо знать её параметры:

  • R1, R2‘, RM — активные сопротивления фаз статора, ротора и ветви намагничивания;
  • X1, X2‘, XM — индуктивные сопротивления рассеяния фаз статора ротора и ветви намагничивания.
Читайте также:  Горючая смесь в двигателе дизеля воспламеняется при температуре 1100

Эти параметры требуются для определения пусковых токов при выборе магнитных пускателей и контакторов, при выполнении защит от перегрузок, для регулирования и настройки системы управления электроприводом, для моделирования переходных процессов. Кроме того, они необходимы для расчета пускового режима АД, определения характеристик асинхронного генератора, а также при проектировании асинхронных машин с целью сопоставления исходных и проектных параметров [3].

Рис. 1. Схема замещения асинхронного двигателя

Воспользуемся методикой расчёта параметров схемы замещения [3] для определения активных и реактивных сопротивлений фаз статора и ротора. Значения коэффициента полезного действия и коэффициента мощности при частичных нагрузках, необходимые для расчётов, приведены в техническом каталоге [4 стр.10]: pf = 0.5 — коэффициент частичной нагрузки, %; Ppf = Pн·pf — мощность при частичной нагрузке, Вт; η _pf = 0.56 — к.п.д. при частичной нагрузке, %; cosφ_pf = 0.4 — cos(φ) при частичной нагрузке.

Значения сопротивлений в схеме замещения: X1=4.58 — реактивное сопротивление статора, Ом; X2‘=6.33 — реактивное сопротивление ротора, Ом; R1=3.32 — активное сопротивление статора, Ом; R2‘=6.77 — активное сопротивление ротора, Ом.

Построим механическую характеристику асинхронного двигателя по формуле Клосса (1).

Скольжение определяют из выражения вида:

, (2)

где — скорость вращения ротора АД, рад/сек,

синхронная скорость вращения:

. (3)

Критическая скорость вращения ротора:

. (4)

. (5)

Точку критического момента определим из выражения

. (6)

Пусковой момент определим по формуле Клосса при s=1:

. (7)

По произведенным расчетам построим механическую характеристику АД (рис. 4). Для ее проверки на практике проведем эксперимент.

Построение экспериментальной механической характеристики

При проведении эксперимента используется лабораторный стенд НТЦ-13.00.000 «Электропривод». Имеется система, состоящая из АД, к валу которого в качестве нагрузки подключен двигатель постоянного тока (ДПТ) независимого возбуждения. Необходимо построить механическую характеристику асинхронного двигателя, используя паспортные данные асинхронной и синхронной машин и показания датчиков. Имеем возможность изменять напряжение обмотки возбуждения ДПТ, измерять токи на якоре синхронного и асинхронного двигателя, частоту вращения вала. Подключим АД к источнику питания и будем нагружать его, изменяя ток обмотки возбуждения ДПТ. Проведя эксперимент, составим таблицу значений из показаний датчиков:

Таблица 1 Показания датчиков при нагрузке асинхронного двигателя

Источник

Adblock
detector