Плавный пуск асинхронного двигателя принцип работы

Для чего нужен плавный пуск асинхронного двигателя

Сейчас асинхронные двигатели распространены повсеместно по причине своей низкой стоимости, простой конструкции и высокой надежности. Асинхронные двигатели были лучше двигателей на постоянном токе практически во всем кроме тех моментов, где требовалось плавное регулирование частоты вращения.

Устройство плавного пуска ( УПП ) как раз и создано, чтобы убрать недостатки асинхронных двигателей. В этой статье я расскажу вам об УПП подробнее.

Зачем нужно ограничивать пусковые токи

Как известно во время запуска мотора в первые мгновения создается значительный пусковой импульс, который необходим для преодоления нагрузочного момента на валу.

И для того, чтобы сформировать этот импульс, двигателю необходимо довольно большое количество электроэнергии, которую он берет из подключенной сети.

И здесь рождается первая проблема, а именно просадка напряжения, которая негативно может сказаться на нагрузку, подключенную к этой же сети.

Например, сильная просадка по напряжению может спровоцировать увеличение потребления тока подключенных двигателей, что еще больше просадит напряжение и может привести к полной остановке вращающихся механизмов.

Следующим негативным фактором являются значительные пусковые токи, которые при протекании по обмоткам ротора выделяют огромное количество тепловой энергии, что может привести к повреждению изоляции и вследствие этого выхода из строя изделия.

Третьим негативным фактором является вероятность механического повреждения в результате резкого рывка.

Вот для того, чтобы ликвидировать эти негативные факторы, и нужно ограничивать пусковые токи, реализовать так называемый плавный пуск.

Какие способы ограничения пусковых токов существуют

Итак, для того, чтобы плавно запустить асинхронный двигатель и минимизировать бросок тока есть два варианта:

1. В обмотке статора уменьшают ток. Для этого обмотку разделяют на три отдельные катушки и соединяют по системе звезда. При этом свободные концы выводят на коллекторы (контактные кольца), которые зафиксированы на хвостовике вала.

Далее к коллектору подключают реостат, сопротивление которого в первый момент пуска имеет максимальное значение. По мере того как сопротивление реостата снижается ток на роторе увеличивается, а это значит что двигатель начинает раскручиваться.

Такие установки называются двигателями с фазным ротором и активно применяются в кранах, троллейбусах и трамваях.

2. Путем уменьшения напряжения и тока, которые передаются на статор. Такой вариант реализуется так:

— С помощью автотрансформаторов и реостатов.

— Специальными схемами на базе тиристоров или же симисторов. Именно такие ключевые схемы получили название Устройства плавного пуска, ( УПП ) которые так же называют софт-стартерами.

Примечание. Частотные преобразователи тоже позволяют реализовать плавный пуск двигателя, вот только такие регуляторы компенсируют резкий скачок крутящего момента, пусковые токи же остаются такими же высокими.

График изменения напряжения при различных вариантах переключения выглядит следующим образом:

А изменение тока и крутящего момента при этом будет выглядеть так:

Заключение

Как видно плавный пуск асинхронного двигателя имеет явные плюсы за исключением одного, такое усложнение схемы ведет к его удорожанию.

Поэтому прежде чем приступать к реализации плавного пуска следует просчитать, а будет ли выгоден такой «апгрейд» или лучше использовать двигатель на постоянном токе, который позволяет плавно регулировать обороты без значительных финансовых вливаний.

Источник

Устройство плавного пуска — что и как?

Устройства плавного пуска электродвигателей являются статическими электронными или электромеханическими устройствами, предназначенными для плавного ускорения и плавного замедления, а также для защиты трехфазных индукционных электродвигателей.

Устройства плавного пуска УПП осуществляют действия по снижению величины пускового тока и помогают осуществить согласование крутящего момента двигателя и момента нагрузки.

Принцип работы устройства плавного пуска

Управление напряжением, подаваемым на двигатель, осуществляется посредством изменения угла открытия тиристоров. В устройстве находятся два встречно-включенных тиристора, предназначенных для положительного и отрицательного полупериодов. Сила тока в третьей фазе, оставшейся без управления складывается из токов фаз под управлением.

После осуществления настройки, значение вращающего момента при пуске машины оптимизируется до предельно низкой величины пускового тока. Значение тока электродвигателя уменьшается параллельно значению установленного пускового напряжения на пуске. Величина пускового момента уменьшается в квадратичном отношении к напряжению.

Уровень напряжения осуществляет контроль пускового тока и момента двигателя при запуске и остановке двигателя.

Наличие в устройстве байпасных контактов, которые шунтируют тиристоры, способствует понижению тепловых потерь в тиристорах, а соответственно понижению нагрева всего устройства. Встроенная электронная дугогасительная система защищает контакты в случае появления повреждений в результате непредвиденных сбоев в работе, например, при прерывании подачи напряжения, возникновении вибрации или дефекте контактов.

Рис 1. Внешний вид устройства плавного пуска 3RW30

Читайте также:  Чем можно заправить двигатель автомобиля

Рис 2. Внутренняя схема устройства управления плавным пуском 3RW30

Баланс полярности

Недостаток 2-фазного управления в устройстве плавного пуска асинхронного двигателя проявляется в появлении постоянного тока, вызванного фазовой отсечкой и наложением фазных токов, при которых возникает сильный акустический шум, выделяемый электродвигателем.

Применение метода «баланс полярности» значительно понижает влияние значений постоянного тока во время разгона двигателя, соответственно снижается акустическая характеристика запуска, достигается это благодаря балансированию полуволн различной полярности в процессе разгона двигателя.

Интерфейс устройства

Интерфейс устройства плавного пуска УПП «человек-машина» разрешает производить настройку параметров, существенно облегчая и упрощая осуществление процесса запуска и эксплуатации двигателя. Встроенная функция управления насосом предотвращает возникновение гидравлического удара.

Рис3. Интерфейс устройства плавного пуска

Рис. Б. прикладной модуль AS-интерфейса

Рис 4. Устройство плавного пуска электродвигателя — схема фидерной комбинации с AS-интерфейсом

Интерфейс состоит из двух дисплеев с сегментными индикаторами и ЖК-дисплеем, позволяющим обеспечить видимость на значительном расстоянии, включает в свой состав описание параметров и сообщений.

В возможности аппаратуры входит выбор режима программирования и языковые опции. Осуществляет копирование параметров из одного устройства в другое, увеличивая скорость программирования, повышая надежность оборудования и получая возможность корректирования и внесения идентичных параметров на одинаковых машинах.

Плавный пуск для однофазного двигателя

Устройство плавного пуска однофазного электродвигателя, применяемого в быту, активируется при подаче

Uк выводам L1 и L2.

Рис 5. Схема лицевой панели устройства TSG предназначенного для однофазного двигателя

Происходит увеличение значение линейного напряжения в течение определенного отрезка времени до достижения его предельного значения. Выводы Т-2 и Т-3 постоянно запитаны от питающей сети. Время процесса регулируется регулятором, в диапазоне до 20 сек. С повышением параметров напряжения происходит увеличение вращающего момента. После окончания запуска, через шунтирующий контактор (байпас) происходит подключение двигателя от сети.

Рис. 6. Схема работы устройства плавного пуска TSG при положении регулятора момента вращения Моn =0, при котором начинается цикл плавного пуска

Устройство плавного пуска электродвигателя насоса

Устройство плавного пуска для насоса с использованием преобразователя частоты осуществляет следующие операции это:

  1. Осуществление плавного пуска и торможения насосного агрегата.
  2. Производство автоматического коммутирования в зависимости от показателей уровня и параметров давления жидкости.
  3. Защиту агрегата от «сухого хода», то есть без жидкости.
  4. Защита агрегата при критическом снижении параметров напряжения.
  5. Осуществление защитных действий от перенапряжения на входе преобразователя.
  6. Сигнализирует о включении, отключении агрегата, а также при аварии.
  7. Осуществляет местный обогрев.

Рис. 7. Устройство плавного пуска схема принципиальная, для автоматизации работы погружного насоса с поддержкой давления в полном автоматическом режиме

Подключение электродвигателя осуществляется от контактов U,V,W преобразующего частотного устройства. Пусковая кнопка SB2 вызывает срабатывание реле К1 через ее контактную группу происходит соединение вводов STF и PS частотного преобразователя, который производит плавный запуск электрического насоса, который осуществляется по заложенному программному обеспечению, включенному в настройку устройства.

Датчик определяющий давление ВР1 запитан от ввода преобразователя, делает возможной наличие обратной связи в цепи стабилизирующей давление. Работа этой системы происходит при обеспечении ПИД-регулятора. Потенциометр К1 или частотный преобразователь выполняют функцию по поддержанию заданных параметров давления. Насосный агрегата, при появлении «сухого» хода, должен отключаться для зашиты, в этом случае, контакты 7-8 в цепи катушки реле К3 замыкаются, отключение происходит при срабатывании датчика «сухого» хода подключенного от реле сопротивления А2 . Реле К2 осуществляет защитную функцию по отключению электродвигателя агрегата при аварии. При аварии происходит включение лампыНL1, лампа НL2 зажигается после срабатывания датчика реагирующего на понижение водяного уровня, на недопустимое значение.

Термореле ВК1 осуществляет включение подогрева шкафа управления контактором КМ1, электронагревателей ЕК1 и ЕК2. Защита устройства от тока короткого замыкания и перегруза производится автоматом QF1.

Высоковольтное устройство плавного пуска его отличительные особенности

Рис 8. Схема высоковольтного устройства плавного пуска

К отличительным особенностям относятся:

  1. Наличие оптоволоконного управления тиристорами.
  2. Управление на микропроцессорах.
  3. Способность к работе при повышенной температуре.
  4. Возможность задания различных алгоритмов и характеристик пуска и торможения для разных видов нагрузки.
  5. Способность к интеллектуальной защите.
  6. Возможность осуществления пуска при слабых источниках питания.
  7. Осуществление степени защиты от IP 00 доIP 65

Важно: при наладке устройства плавного пуска нужно чтобы установленное время разгона было больше физического времени разгона двигателя, иначе присутствует возможность получения повреждения устройства, так внутренние байпасные контакты замыкаются по истечении времени пуска. В том случае если не произошел разгон двигателя, может выйти из строя система байпасных контактов.

Важно: автоматический повторный пуск опасен не только повреждением устройства, но и может привести к смерти людей и тяжелому травматизму.

Команда запуск, обязана сбрасываться до команды сброса, так как при наличии команды запуска после команды сброса, автоматически выполняется повторный перезапуск. Особенно это касается защиты двигателя.

Для безопасности желательно присоединить выход общей ошибки в систему управления.

Рекомендация: нежелательность автоматического пуска, диктует необходимость присоединения дополнительных компонентов, например, устройства выпадения фазы или нагрузки, с цепями управляющего и главного тока.

Источник

Устройство плавного пуска асинхронного двигателя

Асинхронные электрические машины с короткозамкнутым ротором имеют достаточно низкую стоимость, оптимальное соотношение “мощность-масса”. Их также отличает простота обслуживания и ремонта, надежность. Один из основных недостатков двигателей этой конструкции – увеличение тока в 5-10 раз при пуске. При этом величина напряжения в сети уменьшается. Для устранения нежелательных явлений применяют различные устройства и схемы подключения электродвигателей.

Читайте также:  Как слить антифриз с блока двигателя ситроен с4

Необходимость плавного запуска

При плавном запуске асинхронного двигателя возможно снизить недостатки таких электрических машин и обеспечить:

  • Снижение затрат на ремонт. Пусковые токи вызывают перегрев обмотки, что существенно снижает эксплуатационный ресурс машин.
  • Отсутствие рывков. Резкий старт двигателя приводит к увеличению износа шестеренчатых передаточных механизмов, гидроударам в сети подачи жидкости, другим нежелательным последствиям.
  • Снижение потребляемой электроэнергии. Прямой пуск вызывает дополнительные энергозатраты. Кроме того, просадки напряжения в условиях ограниченной мощности сети отрицательно влияют на все подключенные устройства.
  • Уменьшение расходов на оборудование коммутации. Электротехнические устройства для асинхронного привода выбирают с большим запасом мощности. Плавный пуск позволяет подключать более дешевые аппараты коммутации и защиты.

Плавный старт и разгон существенно расширяет сферы применения асинхронных электродвигателей.

Способы пуска асинхронных электродвигателей

Для запуска асинхронных двигателей используется разные методы. На практике наибольшее распространение получили следующие способы:

  • Изменение конструкции электродвигателей (роторы с глубокими пазами, типа “двойная беличья клетка”).
  • Прямой пуск.
  • Запуск на пониженном напряжении.
  • Частотный пуск.

Двигатели специальной конструкции существенно дороже обычных электрических машин, что сильно ограничивает их применение.

Прямой запуск

Самая простая схема пуска асинхронных электрических машин с короткозамкнутым ротором – непосредственное подключение к сети. Подача напряжения на статорные обмотки осуществляется замыканием силовых контактов магнитного пускателя или контактора.

При прямом пуске электрической машины момент силы на валу значительно меньше номинального. Кроме того, запуск на полном напряжении вызывает броски тока и снижение напряжения. Прямой запуск применяется:

  • При низкой мощности электрической машины.
  • Для технологического оборудования, не нуждающегося в плавном разгоне.
  • Для механизмов с запуском без нагрузки.

Такой способ непригоден для приводов инерционного оборудования, устройств нетребовательных к величине пускового момента, при ограниченной мощности электросети.

Пуск на пониженном напряжении

Запуск асинхронных электрических машин на сниженном напряжении реализуется при помощи нескольких схем:

  • Переключением обмоток статора “звезда-треугольник”.
  • Подключением через трансформатор.
  • Включением в цепь обмоток статора пусковых резисторов или реакторов.

Принцип действия первой схемы основан на пуске электрической машины при подключении обмоток “звездой”. После разгона двигателя коммутационные аппараты переключают их на “треугольник”. Этим достигается 3-х кратное снижение пускового тока.

При этом пусковой момент на валу также снижается более чем на 30%. Кроме того, преждевременное переключение также вызывает скачки тока до величин, возникающих при прямом запуске. Такой способ также непригоден для инерционного оборудования и установок, запускаемых под нагрузкой.

Для устранения недостатков электродвигателей с короткозамкнутым ротором также применяют автотрансформаторные схемы пуска.

При этом устройство для преобразования напряжения включают последовательно в цепь обмоток электрической машины. Эта схема обеспечивает плавный разгон и уменьшение пускового тока. Через автотрансформаторы подключают приводы мощных установок и оборудования со значительным моментом сопротивления.

Высокая стоимость элементов схемы, скачок тока при переходе на полное напряжение ограничивают ее применение.

Широко применяются также реакторные и резистивные схемы пуска. Для снижения напряжения к обмоткам последовательно подключают резисторы или катушки, обладающие реактивным сопротивлением. Запуск осуществляется при включении в цепь последовательно включенных элементов с активным или индуктивным сопротивлением.

При разгоне двигателей реакторы и пусковые сопротивления постепенно шунтируются и выключаются из цепи. Недостатком этого метода является высокая стоимость оборудования, значительно сниженный пусковой момент.

Частотный пуск

Такой способ старта и разгона основан на зависимости момента и скорости вращения вала электродвигателя от частоты питающего напряжения на обмотках. Для изменения этой характеристики применяют частотные преобразователи. Запуск через ПЧ решает все проблемы старта и разгона асинхронного электродвигателя. Однако, эти устройства имеют высокую цену, большие габариты, а также являются источником высших гармоник.

Устройства плавного пуска

Устройство плавного пуска, УПП или софт-стартеры – электротехническое оборудование для обеспечения старта и разгона двигателя и согласования пускового момента на валу с нагрузкой. Схема УПП построена на базе силовых тиристоров или симмисторов. Устройство представляет собой безтрансформаторный бесступенчатый преобразователь напряжения. Устройства плавного пуска применяют:

  • Для включения мощных асинхронных электродвигателей в сеть малой мощности.
  • Для плавного запуска, разгона и остановки электрических машин.
  • При необходимости пуска двигателя под нагрузкой.
  • Для снижения пусковых токов.

УПП позволяют отказаться от дорогих и несовершенных схем запуска электродвигателей, а также значительно расширить сферы применения недорогих и функциональных асинхронных машин с короткозамкнутым ротором. Они используется в приводе технологического оборудования:

  • Легкого пуска. Пусковые токи при таких условиях не превышают трехкратного номинального значения.
  • Тяжелый пуск. При старте электродвигателя ток возрастает в 4-5 раз, переходные процессы в цепях длятся более 30 секунд.
  • Особо тяжелый пуск. При этом пусковой ток превышает номинальный в 7-10 раз. Переходной процесс занимает значительное время.

Устройства плавного пуска имеют относительно низкую стоимость, небольшие габариты и массу в сравнении с преобразователями частоты.

Читайте также:  Электрическая схема генератора газ 3110 с двигателем 402

Принцип работы УПП

Силовая часть устройства плавного пуска состоит из силовых тиристоров, включенных встречно-параллельно и обходных контакторов. Изменение напряжения достигается регулировкой проводимости полупроводниковых устройств путем подачи отпирающих импульсов на управляющие контакты.

В состав УПП также входит:

  • Генератор управляющих импульсов. Этот блок вырабатывает сигналы, изменяющие угол проводимости полупроводниковых устройств при пуске и остановки электродвигателя.
  • Управляющее устройство на базе контроллера или микропроцессора. Его основные функции – подача команд на генератор импульсов, обеспечение связи с другими устройствами, прием сигналов от датчиков, обеспечение защитного отключения электрической машины при аварийных и ненормальных режимах работы.

Старт электрической машины осуществляется на напряжении, составляющем 30-60% от номинального. При этом происходит плавное зацепление шестеренок передаточного механизма, постепенное натяжение ремней привода. Далее управляющий блок постепенно увеличивает проводимость тиристоров до полного разгона электродвигателя. При достижении номинальной частоты вращения вала, замыкаются контакты шунтирующих коммутационных устройств. Ток начинает течь в обход тиристоров. Это необходимо для снижения нагрева полупроводниковых устройств, увеличения срока службы УПП, снижения энергопотребления.

При остановке электродвигателя, контактор включает в цепь тиристоры. С генератора импульсов поступают сигналы, плавно уменьшающие проводимость тиристоров до остановки электрической машины.

Виды УПП

По способу регулировки напряжения различают одно-, двух-, трехфазные устройства:

  • Устройство плавного пуска с регулировкой напряжения по одной фазе. Применяются в электроприводе оборудования мощностью 11 кВт. Такие УПП обеспечивают снижение динамических ударов и отсутствие рывков при старте привода. Недостатками устройств такого типа являются несимметричная нагрузка при запуске, большие пусковые токи.
  • Двухфазные УПП. Применяются в приводах мощностью до 250 кВт для снижения динамических нагрузок при пуске. Обеспечивают некоторое снижение пусковых токов, нагрева двигателя. Используется в оборудовании со среднетяжелыми условиями пуска при отсутствии жестких требований к ограничению тока.
  • Трехфазные софт-стартеры. УПП такого типа снижают пусковые токи до 3-х кратного значения от номинала, позволяют осуществлять плавную остановку, обеспечивают аварийное отключение привода. Регулировка напряжения осуществляется по всем трем фазам, что исключает появление асимметрии. Номинальная мощность привода ограничена только характеристиками полупроводниковых силовых элементов. Такие УПП используют в приводе с особо тяжелыми условиями пуска, с частым включениями и остановками.

Основные и дополнительные функции УПП

Современные софт-стартеры – многофункциональные электротехнические устройства. Основное их предназначение – снижение пусковых токов и смягчение динамических ударов при старте двигателя. Кроме того, УПП обеспечивают:

  • Пуск с номинальным моментом. При этом при старте на электродвигатель подается максимальное напряжение, после чего включаются тиристоры. Разгон до номинальной частоты осуществляется плавно. Софт-стартеры такой конструкции применяют для механизмов со значительной пусковой нагрузкой.
  • Динамическое торможение. УПП с данной функцией обеспечивают остановку привода без выбега. Их устанавливают в приводе инерционного технологического оборудования: тяговых вентиляторов, подъемниках и т.д.
  • Пуск в функции тока и напряжения. УПП такой конструкции позволяют задавать предельное значение пускового тока. Устройства применяются при низкой мощности сети, а также в приводе оборудования с низким стартовым моментом.
  • Защиту электродвигателя. Софт-стартеры обеспечивают остановку привода при обрыве фаз, перегрузках, превышении времени разгона, а также при возникновении других аномальных и аварийных режимов. УПП не имеют защиты от коротких замыканий и включаются через предохранители или автоматы.
  • Интеграцию в САР и системы телемеханики. Софт-стартеры с процессорными блоками управления и устройствами поддержки протоколов связи с удаленным оборудованием контроля легко встраиваются в многоуровневые системы автоматизации технических процессов.
  • Регулировку частоты вращения вала. УПП с такой функцией не заменяют частотные преобразователи. Такой режим допустим при непродолжительной настройке оборудования.

Выбор функционала софт-стартера зависит от требований к электроприводу и осуществляется на основании технико-экономической целесообразности.

Преимущества УПП

В сравнении с другими схемами пуска асинхронных электродвигателей, УПП обеспечивает наибольшее снижение амплитуды пускового тока.

Кроме того, такие устройства обладают следующими преимуществами:

  • Продление срока службы двигателя и технологического оборудования. УПП снижает нагрев обмоток, контактов, а также исключает динамические удары.
  • Значительное снижение затрат на аппаратную часть электропривода. Установка софт-стартеров позволяет сэкономить на схемах защиты, устанавливать менее мощные коммутирующие устройства.
  • Снижение нагрузки на электросеть. УПП снижают броски тока и предотвращают падение напряжения в электросетях. Это особенно актуально при ограниченной мощности трансформаторов и использовании автономных источников электропитания.
  • Повышение безопасности производства. Плавный старт и разгон снижет травматизм при поломках оборудования, связанных с рывками при запуске, вероятность гидравлических ударов, других аварийных ситуаций.
  • Уменьшение наводимых помех при старте. Софт-стартеры снижают интенсивность магнитного поля при пуске электродвигателя. УПП позволяют отказаться от фильтров для контрольных кабелей.
  • Низкая стоимость. Устройства плавного пуска стоят в несколько раз дешевле преобразователей частоты той же мощности. Софт-стартеры выгодно использовать при постоянной нагрузке оборудования в условиях, где ограничение пусковых токов и стартового момента являются основными требованиями.

УПП также заменяют механические тормоза и кинематические устройства для остановки. Кроме того, софт-стартеры позволяют применять асинхронные двигатели с ротором типа “ беличья клетка” вместо дорогих электрических машин с улучшенными пусковыми характеристиками или фазным ротором.

Выбор схемы пуска осуществляется на основании анализа требований к оборудованию и характеристик электрической сети.

Источник

Adblock
detector