Отказы и причины отказов двигателей автомобилей

Типичные неисправности инжекторных двигателей. Практические советы

Современные автомобили с системами впрыска, мощным и экономичным двигателем хороши в дальних поездках. Но именно там, вдалеке от «продвинутых» СТО и квалифицированных специалистов, тревожный сигнал «Check Engine» (Check Engine — лампочка на щитке приборов говорящая о том что ЭБУ(электронный блок управления) обнаружил проблемы в системе управления двигателем), особенно пугает путешественников. Одни ударяются в панику и, боясь необратимых последствий, достают из багажника трос. Другие, напротив, хладнокровны: раз мотор работает, значит, лампа «просто ошиблась» и «сама погаснет» — можно ехать в прежнем темпе.

Умение распознавать симптомы типичных впрысковых недугов, представлять, чем грозит горящая желтая лампа, поможет сохранить нервы, деньги, время и мотор. Если двигатель исправен, сигнал «Check Engine» должен погаснуть через 0,6 секунды после пуска — этого хватает на то, чтобы система самодиагностики убедилась: все в порядке. Если все же лампочка продолжает гореть, то есть место присутствие неисправности, которую возможно выявить с помощью специального мотор-тестера на СТО или своими силами. Что касается “своими силами” – это поверхностная диагностика, которая может дать примерное определение неисправности, причина этому – отсутствие специальных измерительных приборов и параметров компонентов системы впрыска. Но в дороге, в отсутствии СТО, это может помочь Вам и придать уверенность, что машина все-таки доедит до назначенного пункта.

Что-то не работает, что теперь может быть?

Датчик положения коленчатого вала. Что угодно, но только не это. Это единственный датчик, неисправность которого не позволит доехать даже до гаража. Отказ его — явление исключительное. Устанавливается на приливе корпуса масляного насоса на расстоянии(1 ± 0,4)мм от вершины зубцов шкива коленчатого вала. По импульсу синхронизации от датчика положения коленчатого вала, контроллер определяет положение и частоту вращения коленчатого вала и рассчитывает момент срабатывания форсунок и модуля зажигания.

Бензонасос — никуда не уедешь. Если бензонасос стал хуже работать, причины в основном из-за грязи и воды в бензине, то появляются провалы, потеря мощности, хлопки во впускную систему. Если же он совсем умирает, то ехать дальше машина не будет: сердце остановилось.

При неисправности всех остальных датчиков и механизмов двигатель будет работать: компьютер перестроится на аварийную программу.

«Гибель» датчика положения распредвала (фазы) неискушенному ремонтнику без диагностического оборудования обнаружить весьма сложно. Хотя двигатель и работает в нештатном режиме попарно-параллельной подачи топлива, когда каждая форсунка срабатывает в два раза чаще (один раз за каждый оборот коленвала) — определить это на слух не пытайтесь. Выхлоп теряет былую чистоту, но поймать увеличение токсичности удается только замерами по ездовому циклу. Понять, что мотор нездоров, можно по возросшему расходу топлива. Еще один признак неисправности — сбои в работе системы самодиагностики. К другим неприятным для двигателя последствиям отказ датчика фазы не приведет.

Если Ваша машина потребовала «игры» педалью газа при пуске, потеряла былую резвость на режимах максимальной мощности и крутящего момента, скорее всего, виноват датчик массового расхода воздуха. Система управления, реагируя на его отказ, «позднит» зажигание на 10-12 гр. При этом отклик на педаль газа в начале разгона может даже улучшиться. Выхлоп станет грязнее, а мотор заметно прожорливей. Не требуя от автомобиля былой прыти, вполне можно добраться до дома, даже если впереди несколько сотен километров.

Гораздо трудней ехать с неисправным датчиком положения дроссельной заслонки. Симптомы хорошо заметны — потеря мощности, неприятные рывки и провалы на разгоне, неустойчивые холостые обороты, нет торможения двигателем. Двигатель словно подменили, а сигнальная лампа может и не загореться. Блок управления способен определить обрыв или короткое замыкание датчика и его цепи, но пасует перед «плавающим» сигналом.

Долгая езда с этой неисправностью не просто неприятна, а опасна. При больших нагрузках компьютер, не получая должной информации, будет исходить из того, что автомобиль движется в умеренном режиме, на экономичной смеси. Поэтому езда «с педалью в полу» приведет к перегреву и детонации со всеми вытекающими последствиями. Двигаться до гаража или станции сервиса следует в этом случае не торопясь, в щадящем темпе.

Читайте также:  Что такое двигатель шоера

Неисправный регулятор добавочного воздуха дает о себе знать затрудненным пуском с отпущенной педалью газа и неустойчивыми холостыми оборотами. Узел неразборный, если не помогла промывка каналов холостого хода и дроссельной заслонки, придется менять его целиком.

Если вышел из строя датчик температуры охлаждающей жидкости, компьютер принимает пусковую температуру двигателя равной 0оС и дает соответствующую команду регулятору добавочного воздуха. Неоптимальное соотношение количества бензина и воздуха затруднит пуск в мороз. Уже через две минуты после того, как мотор все-таки пустили, компьютер решит, что температура охлаждающей жидкости достигла 80оС. Так что не только пускать, но и прогревать двигатель придется, работая педалью газа.

Другая неприятность ждет водителя, когда мотор нагреется до температуры, близкой к критической, например, в жару, в пробке. Компьютер, получая неверный сигнал и считая, что температура «Тосола» в норме, не откорректирует угол опережения зажигания. Двигатель потеряет мощность и будет детонировать.

Крайне редко выходит из строя датчик детонации. Чаще поврежденными оказываются подходящие к нему провода. Их нужно проверить, если лампа самодиагностики загорается при 3000 об/мин и выше. Мотор станет более чувствителен к качеству бензина — заправка непроверенным топливом приведет к «стуку пальцев».

Выход из строя катушки зажигания, к сожалению, не редкость. Признаки — провалы при разгоне, потеря мощности, неустойчивые холостые и, наконец, полное отключение двух цилиндров. Если вам необходимо проехать несколько километров с «двоящим» мотором, отключите разъемы соответствующей пары форсунок, чтобы бензин не смывал масло со стенок нерабочих цилиндров и не попадал в картер.

Датчик кислорода (L-зонд) — вроде ничего серьезного, только люди начинают со временем понимать, что такое парниковый эффект, топливо расходуется зря и нейтрализатор умирает, а за ним резко падает мощность.

Необходимо отметить, что более точная диагностика возможна, только с применением специального оборудования: мотор-тестер, манометр для измерения давления топлива, технические параметры. Визит на СТО позволит сэкономить деньги при покупке датчиков, которые как Вам показалось вышли из строя. Так как нерабочий датчик – это не всегда поломка самого датчика, но и электропроводки и ЭБУ. Согласитесь, неисправности датчиков системы управления и устройств топливоподачи не так страшны, как кажется некоторым убежденным приверженцам карбюраторов или просто непосвященным. Запаситесь перед дальней дорогой датчиком коленвала, катушкой зажигания, а для подстраховки — бензонасосом и стартуйте.

Понравилась статья?

Ставь лайк и подписывайся на канал !

Так ты будешь получать больше интересной и полезной информации.

Источник

Отказы и неисправности двигателя. Общая диагностика ДВС

Отказы и неисправности. При эксплуатации двигателя в цилиндропоршневой группе (ЦПГ), кривошипно-шатунном механизме (КШМ), газораспределительном механизме (ГРМ), вспомогательных узлах и агрегатах появляются дефекты, которые могут быть вызваны как естественным и ускоренным износом деталей, так и внезапным появлением дефектов, потерей работоспособности деталей. Практика эксплуатации отечественных легковых автомобилей показывает, что примерно 20% всех отказов приходится на двигатель и его системы.

К основным отказам и неисправностям КШМ относят: износ, заклинивание, разрушение вкладышей; деформацию постелей в блоке; деформацию коленчатого вала; деформацию, износ отверстий нижней головки шатуна; обрыв шатуна или шатунных болтов; износ втулки верхней головки шатуна; износ подшипников балансирных валов; заклинивание, разрушение подшипников балансирных валов.

Для ЦПГ характерны появление разрушений перемычек, трещин в поршне; прогорание днища поршня; износ поршней, колец, цилиндров, поршневых пальцев; разрушение поршневых колец; деформация юбки поршня, задиры на юбке и поверхности цилиндра, возникновение пробоин, трещин в цилиндре или блоке; коробление плоскостей блока; выпадение фиксаторов поршневого пальца в поршне.

Основными признаками неисправности КШМ и ЦПГ являются: падение компрессии в цилиндрах, появление посторонних шумов и стуков при работе двигателя; появление из маслозаливной горловины голубоватого дыма с резким запахом; увеличение расхода масла, разжижение моторного масла.

Существенный перечень отказов и неисправностей имеет ГРМ: износ седла, клапана и направляющих втулок; разрушение, прогар клапанов; разрушение пружин; износ подшипников распределительного вала; перегрев и разрушение подшипников распределительного вала; износ кулачков распределительного вала и толкателей; износ коромысел и их осей; разрушение седла клапана; заклинивание гидротолкателей; износ цепи (ремня) и звездочек (шкивов) привода распределительного вала; разрушение зубьев звездочек; заклинивание гидронатяжителя; износ плунжера натяжителя цепи; прогар головки блока цилиндров; трещина, пробоина в головке блока; коробление головки блока.

Читайте также:  Как регулировать карбюратор на газели 406 двигатель карбюратор

Признаками неисправности ГРМ являются стуки, вспышки в карбюраторе и хлопки в глушителе.

Общим признаком неисправностей КШМ, ЦПГ и ГРМ является повышение расхода топлива и снижения мощности двигателя.

К основным отказам и неисправностям вспомогательных узлов и агрегатов следует отнести: износ шестерен, корпуса маслонасоса; заклинивание маслонасоса; негерметичность, заклинивание редукционного клапана; разрушение, негерметичность маслоприемника; негерметичность насоса охлаждающей жидкости; разрушение уплотнения и подшипника насоса охлаждающей жидкости; износ, разрушение подшипников и уплотнений турбокомпрессора.

2. Назначение, типы и устройство передних управляемых мостов

Передним управляемым мостомназывается поперечная балка с ведомыми управляемыми колесами, к которым не подводится крутящий момент от двигателя. Этот мост не ведущий и служит для поддерживания несущей системы автомобиля и обеспечения его поворота.

Типы передних управляемых мостов.Передние управляемые мосты различных типов широко применяются на легковых, гру­зовых автомобилях и автобусах с колесной формулой 4 х 2, а также на грузовых автомобилях с колесной формулой 6×4.

В зависимости от типа подвески управляемых колес передние мосты автомобилей могут быть неразрезными и разрезными. В неразрезных мостах управляемые колеса непосредственно связаны с балкой моста. В разрезных мостах связь управляемых колес с балкой моста осуществляется через подвеску. Неразрезные мосты применяются на грузовых автомобилях и автобусах при зависимой подвеске колес. Разрезные мосты устанавливаются на легковых автомобилях и автобусах при независимой подвеске колес.

Передний неразрезной мост представляет собой балкус установленными по обоим концам поворотными цапфами. Балка – кованая стальная, обычно двутаврового сечения. Средняя часть балки выгнута вниз для более низкого расположе­ния двигателя и центра тяжести автомобиля с целью повышения его устойчивости. В бобышках балки закреплены неподвижно шкворни, на которых установлены поворотные цапфы. На по­воротных цапфах на подшипниках установлены ступицы с управляемыми колесами. Колеса, поворачиваясь вокруг шкворней, обеспечивают поворот автомобиля. Мост с помощью рессор крепится к раме автомобиля.

Передний разрезной мост представляет собой балку или поперечину с установленной на ней передней независимой подвеской с управляемыми колесами. Поперечина может быть стальная кованая или штампованная из листовой стали. Она жестко связана с кузовом автомобиля и служит одновременно для крепления двигателя. Управляемые колеса со ступицами, установленные на подшипниках на поворотных цапфах, могут поворачиваться вокруг шкворней (шкворневые подвески), закрепленных в стойках подвески или вместе со стойками (бесшкворневые подвески), обеспечивая поворот автомобиля.

Зубчатые передачи

а) практически неограниченной передаваемой мощности,

б) малым габаритам и весу,

в) стабильному передаточному отношению,

г) высокому КПД, который составляет в среднем 0,97 — 0,98 .

Недостатком зубчатых передач является шум в работе на высоких скоростях, который однако может быть снижен при применении зубьев соответствующей геометрической формы и улучшении качества обработки профилей зубьев.

При высоких угловых скоростях вращения рекомендуется применять косозубые шестерни, в которых зубья входят о зацепление плавно, что и обеспечивает относительно бесшумную работу. Недостатком косозубых шестерен является наличие осевых усилий, которые дополнительно нагружают подшипники. Этот недостаток можно устранить, применив сдвоенные шестерни с равнонаправленными спиралями зубьев или шевронные шестерни. По­следние, ввиду высокой стоимости и трудности изготовления применяются сравнительно редко — обычно лишь для уникальных передач большой мощности. При малых угловых скоростях враще­ния применяются конические прямозубые шестерни, а при больших — шестерни с круговым зубом, которые в настоящее время заменили конические косозубые шестерни, применяемые ранее. Конические гипоидные шестерни тоже имеют круговой зуб, однако оси колес в них смещены, что создает особенно плавную и бесшумную работу. Передаточное отнесение в зубчатых парах колеблется в широких пределах, однако обычно оно равно 1 — 5.

Принцип действия зубчатой передачи основан на зацеплении пары зубчатых колес, см., например, рис. 4.1

По расположению осей валов различают: передачи с параллельными осями, которые выполняют с цилиндрическими колесами внешнего или внутреннего зацепления,; передачи с пересекающимися осями — конические колеса, передачи с пересекающимися осями — цилиндрические винтовые, конические гипоидные, червячные,. Кроме того, применяют передачи между зубчатым колесом и рейкой.

По расположению зубьев на колесах различают передачи: прямозубые и косозубые.

По форме профиля зуба различают: эвольвентные и круговые. Наиболее распространен эвольвентный профиль зуба. Он обладает рядом существенных технологических и эксплуатационных преимуществ. Круговой профиль зуба по сравнению с эвольвентным позволяет повысить нагрузку передач.

Читайте также:  В каких автомобилях алюминиевые двигатели

Оценка и применение.
Основные преимущества зубчатых передач: высокая нагрузочная способность как следствие, малые габариты,

Среди недостатков зубчатых передач можно отметить повышенные требования к точности изготовления, шум при больших скоростях, высокую жесткость, не позволяющую компенсировать динамические нагрузки. Отмеченные недостатки не снижают существенного преимущества зубчатых передач перед другими. Вследствие этого зубча­тые передачи наиболее широко распространены во всех отраслях машиностроения и приборостроения. Из всех перечисленных выше разновидностей зубчатых передач наибольшее распространение имеют передачи с цилиндрическими колесами, как наиболее простые в изготовлении и эксплуатации, надежные и малогабаритные. Конические, винтовые и червячные передачи применяют лишь в тех случаях, когда это необходимо по условиям компоновки машины.

4.3. Контактные напряжения и контактная прочность

Контактные напряжения образуются в месте соприкосновения двух тел в тех случаях, когда размеры площадки касания малы по сравнению с размерами тел (сжатие двух шаров, шара и плоскости, двух цилиндров и т. п.). Если значение контактных напряжений больше допускаемого, то на поверхности деталей появляются вмятины, борозды, трещины или мелкие раковины. Подобные повреждения наблюдаются у зубчатых, червячных, фрикционных и цепных передач, а также в подшипниках качения.

При расчете контактных напряжений различают два характерных случая: первоначальный контакт в точке (два шара, шар и плоскость и т. п.); первоначальный контакт по линии (два цилиндра с параллельными осями, цилиндр и плоскость и т. п.).

На рис. 4.5 изображен пример сжатия двух цилиндров с параллельными осями. До приложения удельной нагрузки q цилиндры соприкасались по линии. Под нагрузкой линейный контакт переходит в контакт по узкой площадке. При этом точки максимальных нормальных напряжений ан располагаются на продольной оси симметрии контактной площадки. Значение этих напряжений вычисляют по формуле

(4.1)

Для конструкционных металлов коэффициент Пуассона располагается в пределах μ=0,25. 0,35. Без существенной погрешности принимают μ1 = μ2 = 0,3 и получают

(4.2)

где Епр и рпр — приведенные модуль упругости и радиус кривизны; Е1 Е2, р1 р2—модули упругости и радиусы цилиндров

Формула (4.2) справедлива не только для круговых, но и для любых других цилиндров. Для последних r1 и г2— радиусы кривизны в точках контакта. При контакте цилиндра с плоскостью r2= . Знак минус в формуле (4.3) относится к случаю внутреннего контакта (когда поверхность одного из цилиндров вогнутая).

Рис. 4.5
в)

При вращении цилиндров под нагрузкой отдельные точки их поверхностей периодически нагружаются и разгружаются, а контактные напряжения в этих точках изменяются по прерывистому отнулевому циклу. Каждая точка нагружается только в период прохождения зоны контакта и свободна от напряжений в остальное время оборота цилиндра. Переменные контактные напряжения вызывают усталость поверхностных слоев деталей. На поверхности образуются микротрещины с последующим выкрашиванием мелких частиц металла. Если детали работают в масле, то оно проникает в микротрещины (рис. 4.6, а). Попадая в зону контакта (рис. 4.6, б), трещина закрывается, а заполняющее ее масло подвергается высокому давле­нию. Это давление способствует развитию трещины до тех пор, пока не произойдет выкрашивание частицы металла (рис. 4,6, в) Выкрашивание не наблюдается, если значение контактных напряжений не превышает допускаемого

Экспериментально установлено, что при качении со скольжениемцилиндры I и 2 обладают различным сопротивлением усталости. Это объясняется следующим. Усталостные микротрещины при скольжении располагаются не радиально, а вытягиваются в направлении сил трения. При этом в зоне контакта масло выдавливается из трещин опережающего цилиндра и запрессовывается в трещины отстающего цилиндра 2. Поэтому отстающий цилиндр обладает меньшим сопротивлением усталости. Ускорение развития трещин при работе в масле не означает, что без масла разрушение рабочих поверхностей замедлено. Во-первых, масло образует на поверхности защитные пленки, которые частично или полностью устраняют непосредственный металлический контакт и уменьшают трение. При контакте через масляную пленку контактные напряжения уменьшаются, срок службы до зарождения трещин увеличивается. Во-вторых, при работе без масла увеличивается интенсивность абразивного износа, который становится главным критерием работоспособности и существенно сокращает срок службы.

Кривые усталости материала по контактным напряжениям подобны кривым усталости по напряжениям изгиба, растяжения — сжатия и другим (см. курс «Сопротивление материалов»)

Источник

Adblock
detector