Монтаж схемы управления реверсивного двигателя

Три наиболее популярные схемы управления асинхронным двигателем

Все электрические принципиальные схемы станков, установок и машин содержат определенный набор типовых блоков и узлов, которые комбинируются между собой определенным образом. В релейно-контакторных схемах главными элементами управления двигателями являются электромагнитные пускатели и реле.

Наиболее часто в качестве привода в станках и установках применяются трехфазные асинхронные двигатели с короткозамкнутым ротором. Эти двигатели просты в устройстве, обслуживании и ремонте. Они удовлетворяют большинству требований к электроприводу станков. Главными недостатками асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи (в 5-7 раз больше номинального) и невозможность простыми методами плавно изменять скорость вращения двигателей.

С появлением и активным внедрением в схемы электроустановок преобразователей частоты такие двигатели начали активно вытеснять другие типы двигателей (асинхронные с фазным ротором и двигатели постоянного тока) из электроприводов, где требовалось ограничивать пусковые токи и плавно регулировать скорость вращения в процессе работы.

Одной из преимуществ использования асинхронных двигателей с короткозамкнутым ротором является простота их включения в сеть. Достаточно подать на статор двигателя трехфазное напряжение и двигатель сразу запускается. В самом простом варианте для включения можно использовать трехфазный рубильник или пакетный выключатель. Но эти аппараты при своей простоте и надежности являются аппаратами ручного управления.

В схемах же станков и установок часто должна быть предусмотрена работа того или иного двигателя в автоматическом цикле, обеспечиваться очередность включения нескольких двигателей, автоматическое изменение направления вращения ротора двигателя (реверс) и т.д.

Обеспечить все эти функции с аппаратами ручного управления невозможно, хотя в ряде старых металлорежущих станков тот же реверс и переключение числа пар полюсов для изменения скорости вращения ротора двигателя очень часто выполняется с помощью пакетных переключателей. Рубильники и пакетные выключатели в схемах часто используются как вводные устройства, подающие напряжение на схему станка. Все же операции управления двигателями выполняются электромагнитными пускателями.

Включение двигателя через электромагнитный пускатель обеспечивает кроме всех удобств при управлении еще и нулевую защиту. Что это такое будет рассказано ниже.

Наиболее часто в станках, установках и машинах применяются три электрические схемы:

схема управления нереверсивным двигателем с использованием одного электромагнитного пускателя и двух кнопок «пуск» и «стоп»,

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок.

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок, в двух из которых используются спаренные контакты.

Разберем принцип работы всех этих схем.

1. Схема управления двигателем с помощью магнитного пускателя

Схема показана на рисунке.

При нажатии на кнопку SB2 «Пуск» на катушка пускателя попадает под напряжение 220 В, т.к. она оказывается включенной между фазой С и нулем ( N) . Подвижная часть пускателя притягивается к неподвижной, замыкая при этом свои контакты. Силовые контакты пускателя подают напряжение на двигатель, а блокировочный замыкается параллельно кнопке «Пуск». Благодаря этому при отпускании кнопки катушка пускателя не теряет питание, т.к. ток в этом случае идет через блокировочный контакт.

Если бы блокировочный контакт не был бы подключен параллельно кнопки (по какой-либо причине отсутствовал), то при отпускании кнопки «Пуск» катушка теряет питание и силовые контакты пускателя размыкаются в цепи двигателя, после чего он отключается. Такой режим работы называют «толчковым». Применяется он в некоторых установках, например в схемах кран-балок.

Остановка работающего двигателя после запуска в схеме с блокировочным контактом выполняется с помощью кнопки SB1 «Стоп». При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми контактами отключает двигатель от питающей сети.

Читайте также:  Технические характеристики двигателя бурана

В случае исчезновения напряжения по какой-либо причине магнитный пускатель также отключается, т.к. это равносильно нажатию на кнопку «Стоп» и созданию разрыва цепи. Двигатель останавливается и повторный запуск его при наличии напряжения возможен только при нажатии на кнопку SB2 «Пуск». Таким образом, магнитный пускатель обеспечивает т.н. «нулевую защиту». Если бы он в цепи отсутствовал и двигатель управлялся рубильником или пакетным выключателем, то при возврате напряжения двигатель запускался бы автоматически, что несет серьезную опасность для обслуживающего персонала. Подробнее смотрите здесь — защита минимального напряжения.

Анимация процессов, протекающих в схеме показана ниже.

2. Схема управления реверсивным двигателем с помощью двух магнитных пускателей

Схема работает аналогично предыдущей. Изменение направления вращения (реверс) ротор двигателя меняет при изменении порядка чередования фаз на его статоре. При включении пускателя КМ1 на двигатель приходят фазы — A , B , С, а при включении пускателя KM2 — порядок фаз меняется на С, B , A.

Схема показана на рис. 2.

Включение двигателя на вращение в одну сторону осуществляется кнопкой SB2 и электромагнитным пускателем KM1 . При необходимости смены направления вращения необходимо нажать на кнопку SB1 «Стоп», двигатель остановится и после этого при нажатии на кнопку SB 3 двигатель начинает вращаться в другую сторону. В этой схеме для смены направления вращения ротора необходимо промежуточное нажатие на кнопку «Стоп».

Кроме этого, в схеме обязательно использование в цепях каждого из пускателей нормально-закрытых (размыкающих) контактов для обеспечения защиты от одновременного нажатия двух кнопок «Пуск» SB2 — SB 3, что приведет к короткому замыканию в цепях питания двигателя. Дополнительные контакты в цепях пускателей не дают пускателям включится одновременно, т.к. какой-либо из пускателей при нажатии на обе кнопки «Пуск» включиться на секунду раньше и разомкнет свой контакт в цепи другого пускателя.

Необходимость в создании такой блокировки требует использования пускателей с большим количеством контактов или пускателей с контактными приставками, что удорожает и усложняет электрическую схему.

Анимация процессов, протекающих в схеме с двумя пускателями показана ниже.

3. Схема управления реверсивным двигателем с помощью двух магнитных пускателей и трех кнопок (две из которых имеют контакты с механической связью)

Схема показана на рисунке.

Отличие этой схемы от предыдущей в том, что в цепи каждого пускателя кроме общей кнопки SB1 «Стоп»включены по 2 контакта кнопок SB2 и SB 3, причем в цепи КМ1 кнопка SB2 имеет нормально-открытый контакт (замыкающий), а SB 3 — нормально-закрытый (размыкающий) контакт, в цепи КМ3 — кнопка SB2 имеет нормально-закрытый контакт (размыкающий), а SB 3 — нормально-открытый. При нажатии каждой из кнопок цепь одного из пускателей замыкается, а цепь другого одновременно при этом размыкается.

Такое использование кнопок позволяет отказаться от использования дополнительных контактов для защиты от одновременного включения двух пускателей (такой режим при этой схеме невозможен) и дает возможность выполнять реверс без промежуточного нажатия на кнопку «Стоп», что очень удобно. Кнопка «Стоп» нужна для окончательной остановки двигателя.

Приведенные в статье схемы являются упрощенными. В них отсутствуют аппараты защиты (автоматические выключатели, тепловые реле), элементы сигнализации. Такие схемы также часто дополняются различными контактами реле, выключателей, переключателей и датчиков. Также возможно питание катушки электромагнитного пускателя напряжение 380 В. В этом случае он подключается от двух любых фаз, например, от А и B . Возможно использование понижающего трансформатора для понижения напряжения в схеме управления. В этом случае используются электромагнитные пускатели с катушками на напряжение 110, 48, 36 или 24 В.

Читайте также:  Как проверить что двигатель сапунит

Источник

Реверсивная схема запуска асинхронного электродвигателя

Как и обещал в предыдущей статье , привожу схему реверсивного пуска асинхронного двигателя посредством двух магнитных пускателей.

Принцип работы аналогичен нереверсивному запуску , поэтому подробно останавливаться не будем. Главным отличием является использование дополнительных блокировочных контактов КМ1:5 и КМ2:5 .

Известно, что для изменения направления вращения необходимо изменить чередование фаз (в приведенной схеме поменяны местами фазы А и С ). И в случае одновременного включения обоих магнитных пускателей, произойдет короткое замыкание на контактах магнитного пускателя КМ1:1. 3 / КМ2:1. 3.

Для защиты от случайного включения реверса в цепи питания катушек КМ1 и КМ2 включены нормально-замкнутые контакты КМ1:5 и КМ2:5 .

Например, при нажатии кнопки SB2:1 «Вперед « , происходит размыкание контактов КМ1:5 , а только потом замыкание силовых контактов КМ1:1. 3 и блок контактов КМ1:4 . Нажатие на кнопку SB3:1 «Назад « не приведет к включению второго магнитного пускателя, а, следовательно и к короткому замыканию.

Для запуска двигателя в противоположном направлении необходимо произвести остановку двигателя нажатием на кнопку SB1:1 «Стоп «.

Также возможно вариация приведенной схемы с использованием блокировочных контактов на кнопках, а не на магнитных пускателях.

Как видите отличие в схеме минимально. Отличается только работа. Теперь для изменения направления вращения нет необходимости нажимать на кнопку SB1:1 «Стоп « .

Например, если двигатель вращался «вперед» , то при нажатии на кнопку SB3 «Назад « , в первую очередь произойдет размыкание блокировочного контакта SB3:2, что приведет к отключению магнитного пускателя КМ1 , а только потом замкнутся контакты SB3:1 , которые включат пускатель КМ2.

Ну и напоследок — внешний вид ящика управления, собранном по описанной схеме:

Источник

Подключение РЕВЕРСИВНОГО асинхронного электродвигателя: пошаговая инструкция!

Каждый день нас окружает огромное количество электроприборов. Конструкция значительной части этих приборов включает в себя электродвигатели . Сегодня мы рассмотрим, как выполнить подключение реверсивного асинхронного электродвигателя с местным управлением. Следует отметить, что схема подключения контактора для осуществления реверсивного пуска двигателя отличается от схемы для выполнения прямого подключения.

ВАЖНО! Электромонтажные работы следует проводить только с полным соблюдением требований техники безопасности .

Итак, для реверсивного подключения используется следующее оборудование:

автоматический выключатель защиты двигателя , который на схеме имеет обозначение QF1;
два контактора (магнитных пускателя) – обозначены на схеме КМ1 и КМ2 соответственно;
фронтальные или боковые дополнительные контакты для контакторов с минимальным числом контактов — одним нормально открытым (1NO+1NC) и одним нормально замкнутым (2NO+2NC);
автоматический выключатель для защиты цепи управления – обозначение на схеме SF1;
кнопки с шильдиками «ВПЕРЕД» и «НАЗАД» – обозначение на схеме SB2 и SB3 соответственно;
кнопка с шильдиком «СТОП» – обозначение на схеме SB1.

Сначала выполняем подключение контакторов . Для этого отмеряем необходимые длины провода типа ПуВ и производим подключение в соответствии со схемой :

• клемма «1» первого контактора — клемма «1» второго контактора;
• клемма «3» первого контактора — клемма «3» второго контактора;
• клемма «5» первого контактора — клемма «5» второго контактора;
• клемма «2» первого контактора — клемма «6» второго контактора;
• клемма «4» первого контактора — клемма «4» второго контактора;
• клемма «6» первого контактора — клемма «2» второго контактора.

Такая схема подключения магнитного пускателя обеспечит возможность изменять направление движения вала двигателя без переключения жил кабеля в клеммной коробке.

Выполнив подключение контакторов, осуществляем подключение автоматического выключателя защиты двигателя к первому контактору. Для этого отмеряем необходимую длину провода типа ПуВ и производим подключение в соответствии со схемой :

Читайте также:  Какое нужно лить масло в старый двигатель

• клемма «2» автоматического выключателя — клемма «1» контактора;
• клемма «4» автоматического выключателя — клемма «3» контактора;
• клемма «6» автоматического выключателя — клемма «5» контактора.

Выполнив подключение силовой цепи, переходим к цепи управления . Для этого отмеряются необходимой длины провода типа ПуВ и производится подключение по схеме :

• клемма «1» контактора — клемма «1» автоматического выключателя для защиты цепи управления;
• клемма «2» автоматического выключателя для защиты цепи управления — клемма «11» кнопки «СТОП»;
• клемма «12» кнопки «СТОП» — клемма «13» кнопки «ВПЕРЕД», а также клемма «13» кнопки «НАЗАД»;
• клемма «13» кнопки «ВПЕРЕД» — клемма «54 (NO)» первого контактора;
• клемма «14» кнопки «ВПЕРЕД» — клемма «61 (NC)» второго контактора;
• клемма «53 (NO)» первого контактора — клемма «61 (NC)» второго контактора;
• клемма «62 (NC)» второго контактора — клемма катушки»А1″ первого контактора;
• клемма «13» кнопки «НАЗАД» — клемма «54 (NO)» (54 эн оу) второго контактора;
• клемма «14» кнопки «НАЗАД» — клемма «61 (NC)» первого контактора;
• клемма «53 (NO)» второго контактора — клемма «61 (NC)» первого контактора;
• клемма «62 (NC)» первого контактора — клемма катушки «А1» второго контактора;
• клемма катушки «А2» первого контактора — клемма катушки «А2» второго контактора, а также клемма «3» первого контактора.

Далее выполняем подключение сетевого питающего кабеля типа ВВГнг . Зачищаем и маркируем жилы:

• жила серого цвета – маркировка «L1»;
• коричневая жила – «L2»;
• черная жила – «L3».

Затем производим подключение к верхним клеммам автоматического выключателя защиты двигателя:

• жила с маркировкой «L1» — клемма «1»;
• жила с маркировкой «L2» — клемма «3»;
• жила с маркировкой «L3» — клемма «5»;
• жилу желто-зеленого цвета подключаем к свободной клемме шины заземления.

После этого производим подключение кабеля типа ВВГнг для питания электродвигателя . Зачищаем и маркируем жилы:

• жила серого цвета – маркировка «L1»;
• коричневая жила – «L2»;
• черная жила – «L3».

И подключаем к нижним клеммам первого контактора:

• жила с маркировкой «L1» — клемма «2»;
• жила с маркировкой « L2» (эль два) — клемма «4»;
• жила с маркировкой «L3» (эль три) — клемма «6»;
• жила желто-зеленого цвета — свободная клемма шины заземления.

Далее открываем клеммную коробку, заводим питающий кабель . Зачищаем и маркируем жилы:

• жила серого цвета – маркировка «L1»;
• коричневая жила – «L2»;
• черная жила – «L3».

Затем устанавливаем наконечники и производим подключение :

• жила с маркировкой L1 — клемма «U1»;
• жила с маркировкой L2 — клемма «V1»;
• жила с маркировкой L3 — клемма «W1»;
• жилу желто-зеленого цвета подключаем к соответствующему болтовому соединению заземления.

В завершение устанавливаем перемычки «звезда» или «треугольник» исходя из необходимого питающего напряжения.

Таким образом, мы выполнили реверсивное подключение асинхронного электродвигателя.

Также вы можете посмотреть видео на нашем YouTube-канале , в котором детально показано, как выполнить подключение электродвигателя, а также как правильно подключить контактор для обеспечения прямого и реверсивного пуска двигателя https://youtu.be/ornvYjkv0Cs?t=304 .

Оригинал статьи размещен на нашем сайте cable.ru .

Если этот материал был для Вас полезным, поделитесь им в социальных сетях!

А для того, чтобы не пропустить выход новых статей, ставьте «лайк» и подписывайтесь на наш канал: Кабель.РФ: всё об электрике .

Источник

Adblock
detector