Механические характеристики асинхронных двигателей переменного тока

Механическая характеристика асинхронного двигателя

Механической характеристикой двигателя называется зависимость частоты вращения ротора от момента на валу n = f (M2) . Так как при нагрузке момент холостого хода мал, то M2 ≈ M и механическая характеристика представляется зависимостью n = f (M) . Если учесть взаимосвязь s = (n1 — n) / n1 , то механическую характеристику можно получить, представив ее графическую зависимость в координатах n и М (рис. 1).

Рис. 1. Механическая характеристика асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя соответствует основной (паспортной) схеме его включения и номинальным параметрам питающего напряжения. Искусственные характеристики получаются, если включены какие-либо дополнительные элементы: резисторы, реакторы, конденсаторы. При питании двигателя не номинальным напряжением характеристики также отличаются от естественной механической характеристики.

Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.

Пример расчета механической характеристики асинхронного двигателя

Трехфазный асинхронный двигатель с короткозамкнутым ротором питается от сети с напряжением = 380 В при = 50 Гц. Параметры двигателя: P н= 14 кВт, n н= 960 об/мин, cos φн = 0,85, ηн = 0,88, кратность максимального момента k м= 1,8.

Определить: номинальный ток в фазе обмотки статора, число пар полюсов, номинальное скольжение, номинальный момент на валу, критический момент, критическое скольжение и построить механическую характеристику двигателя.

Решение. Номинальная мощность, потребляемая из сети

P1 н = P н / ηн = 14 / 0,88 = 16 кВт.

Номинальный ток, потребляемый из сети

Число пар полюсов

p = 60 f / n1 = 60 х 50 / 1000 = 3,

где n1 = 1000 – синхронная частота вращения, ближайшая к номинальной частоте n н= 960 об/мин.

s н = (n1 — n н ) / n1 = (1000 — 960 ) / 1000 = 0,04

Номинальный момент на валу двигателя

Мк = k м х Мн = 1,8 х 139,3 = 250,7 Н•м.

Критическое скольжение находим подставив М = Мн, s = s н и Мк / Мн = k м.

Для построения механической характеристики двигателя с помощью n = (n1 — s) определим характерные точки: точка холостого хода s = 0 , n = 1000 об/мин, М = 0, точка номинального режима s н = 0,04, n н = 960 об/мин, Мн = 139,3 Н•м и точка критического режима s к = 0,132, n к = 868 об/мин, Мк =250,7 Н•м.

Для точки пускового режима s п = 1, n = 0 находим

По полученным данным строят механическую характеристику двигателя. Для более точного построения механической характеристики следует увеличить число расчетных точек и для заданных скольжений определить моменты и частоту вращения.

Источник

Механическая характеристика асинхронного двигателя

Механическая характеристика асинхронного двигателя это зависимость частоты вращения вала двигателя от момента на его валу n2=f(M) или S=f(M). Механическая характеристика изображена на рис. 13. На характеристике можно выделить четыре характерные точки:

1 Точка идеального холостого хода. В ней М=0, S=0;

2 Точка номинального режима работы. В ней М=МН, S=SН. Значения n2Н и МН можно определить по каталожным данным двигателя;

3 Точка максимального или критического момента. В ней М=Мm, S=SK. Данная точка характеризует перегрузочную способность двигателя.

Рис. 13

В каталогах для определения параметров данной точки приводится величина кратности критического момента двигателя:

Читайте также:  Как закрепить конденсатор при пуске двигателя

.

Величина кратности позволяет определить максимально возможный момент двигателя.

4. Точка пуска. В ней М=МП, S=1. Данная точка характеризует пусковые свойства двигателя. В каталогах для определения пусковых свойств приводится величина кратности пускового момента двигателя:

.

В каталогах приводится также коэффициент кратности пускового тока

который позволяет определить величину тока двигателя в момент пуска.

Синхронные машины

Синхронные машины как двигатели применяются обычно в приводах большой мощности (более 600 кВт) или как микродвигатели, где требуется строгое постоянство скорости: электрочасы, самопишущие приборы и др. Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами, часто называемыми турбогенераторами. Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения. Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.

Схема синхронной машины показана на рис. 14. Синхронная машина отличается от асинхронной тем, что ток в обмотке ротора появляется не при вращении ее в магнитном поле статора, а подводится к ней от постороннего источника постоянного тока. Статор синхронной машины выполнен так же, как и асинхронной, и на нем обычно расположена трехфазная обмотка. Обмотка ротора в синхронной машине создает магнитный поток возбуждения и называется обмоткой возбуждения. Вращающаяся обмотка ротора соединяется с внешней цепью источника постоянного тока с помощью контактных колец и щеток. Обмотка якоря в машине (генераторе) — это обмотка, в которой индуцируется ЭДС и к которой присоединяется нагрузка.

Рис. 14. Схема синхронной машины:

В — обмотка возбуждения, Uв — напряжение В цепи возбуждения

Результирующий магнитный поток создается совместным действием обмоток возбуждения и статора и вращается с той же частотой, что и ротор, поэтому такие машины называются синхронными.

В схеме на рис. 14 статор является якорем, а ротор — индуктором (возбудителем), но может быть и обращенная схема, в которой статор — индуктор, а ротор — якорь как у машины постоянного тока.

В машине с неподвижным якорем применяются две разновидности ротора: явнополюсный ротор имеет явно выраженные полюсы, неявнополюсный ротор не имеет явно выраженных полюсов.

Рис. 15.Принцип устройства явнополюсной (а) и неявнополюсной (б) синхронной машины

/ — статор (якорь), 2 — ротор (индуктор), 3 — обмотка возбуждения

Постоянный ток в обмотку возбуждения синхронной машины может подаваться от специального генератора постоянного тока, установленного на валу машины и называемого возбудителем, или от сети через полупроводниковый выпрямитель.

При вращении ротора с частотой n2 его магнитное поле возбуждения наводит в статоре ЭДС E1, частота которой

Из формулы следует, что чем больше число пар полюсов синхронной машины p*, тем меньше должна быть ее скорость вращения п для получения заданной частоты fi.

Поэтому синхронные генераторы обычно выпускают явнополюсными с большим числом пар полюсов.

Синхронный двигатель несколько сложнее, чем асинхронный, кроме того, требуются два вида тока – переменный и постоянный. Такие двигатели обычно выпускаются большой мощности и имеют большие габариты. Синхронные двигатели имеют проблемы пуска, обусловленные введением ротора в синхронный режим при запуске двигателя. Возможны следующие способы пуска синхронного двигателя: асинхронный пуск на полное напряжение сети и пуск на пониженное напряжение через автотрансформатор. При асинхронном пуске в момент включения (подключения обмоток статора к системе трехфазного тока) обмотки ротора не соединены с источником постоянного тока, а замкнуты накоротко. Двигатель при этом становится по принципу действия асинхронным. После разгона ротора его замкнутые обмотки размыкаются и подключаются к источнику постоянного тока.

Читайте также:  Сборка двигателя уаз 469 своими руками

Вместе с тем синхронный двигатель обладает рядом преимуществ, что позволяет применять его в ряде случаев вместо асинхронного.

1. Основным достоинством синхронного электродвигателя является возможность получения оптимального режима по реактивной энергии, который осуществляется путем автоматического регулирования тока возбуждения двигателя. Синхронный двигатель может работать, не потребляя и не отдавая реактивной энергии в сеть, при коэффициенте мощности (cos фи) равным единице. Если для предприятия необходима выработка реактивной энергии, то синхронный электродвигатель, работая с перевозбуждением, может отдавать ее в сеть.

2. Синхронные электродвигатели менее чувствительны к колебаниям напряжения сети, чем асинхронные электродвигатели. Их максимальный момент пропорционален напряжению сети, в то время как критический момент асинхронного электродвигателя пропорционален квадрату напряжения.

3. Синхронные электродвигатели имеют высокую перегрузочную способность. Кроме того, перегрузочная способность синхронного двигателя может быть автоматически увеличена за счет повышения тока возбуждения, например, при резком кратковременном повышении нагрузки на валу двигателя.

4. Скорость вращения синхронного двигателя остается неизменной при любой нагрузке на валу в пределах его перегрузочной способности.

Механическая характеристика синхронного электродвигателя.

Источник

Механические характеристики асинхронных двигателей

Асинхронный двигатель преобразовывает электрическую энергию в механическую. Механическая характеристика асинхронного двигателя, электромеханическая и другие содержат информацию, без которой невозможна его правильная эксплуатация.

Эта конструкция достаточно широко применяется в различных сферах человеческой жизнедеятельности. Без них немыслима работа станков, транспортеров, подъемно-транспортных машин. Двигатели, обладающие небольшой мощностью, широко используются в автоматике.

Устройство асинхронной машины

Схематичное устройство асинхронной машины

Классическая асинхронная машина состоит из 2 основных частей: ротора (подвижной) и статора (неподвижной). Три отдельные фазы составляют обмотку статора. С1, С2 и С3 — обозначения начала фаз. С3, С4 и С5 — соответственно концы фаз. Все они подсоединены к клеммному разъему по схеме звезда или треугольник, что показано на рисунках а, б, в. Схему выбирают учитывая паспортные данные двигателя и сетевое напряжение.

Статор создает внутри электродвигателя магнитное поле, которое постоянно вращается.

Ротор различают короткозамкнутый и фазный.

В короткозамкнутом скорость вращения не регулируется. Конструкция с ним проще и дешевле. Однако пусковой момент у него слишком мал по сравнению с машинами, у которых фазный ротор. Здесь скорость вращения регулируется за счет возможности ввода дополнительного сопротивления.

Принцип работы асинхронной машины

Подавая напряжение на обмотку статора, по каждой фазе можно наблюдать изменяющиеся магнитные потоки, которые по отношению друг к другу смещены на 120 градусов. Общий результирующий поток получается вращающимся и создает ЭДС внутри проводников ротора.

Читайте также:  Как выгнать воздух из двигателя на рено логан

Там появляется ток, который во взаимодействии с результирующим потоком создает пусковой момент. Это приводит к вращению ротора.

Возникает скольжение S, т. е. разность между частотой вращения самого ротора n2 и частотой магнитного поля статора n1. Первоначально оно равно 1. Впоследствии частота возрастает, разность n1 – n2 уменьшается. Это ведет к уменьшению вращающего момента.

На холостом ходу скольжение минимально. Оно достигает критического значения Sкр, когда увеличивается статический момент. Превышение Sкр ведет к нестабильной работе машины.

Механическая характеристика

Как основная, помогает проводить детальный анализ работы электродвигателя. Она выражает непосредственную зависимость частоты вращения самого ротора от электромагнитного момента n=f (M).

Точка 2 — номинальный режим работы. Точка 3 — частота вращения достигла критического значения. Пусковой момент Мпуск — точка 4.

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Существуют технические способы расчетов и построения механической характеристики с учетом данных паспорта.

В первоначальной точке 1 n0=60f/p (p – количество пар полюсов). Поскольку nн и Mн непосредственно координаты точки 2, расчет номинального момента производится по формуле Mн=9,55*Рн/ nн, где Рн — номинальная мощность. Значение nн указано в паспорте двигателя. В точке 3 Mкр=Mнλ. Пусковой момент в точке 4 Mпуск=Mн*λпуск (значения λ, λпуск — из паспорта).

Механическая характеристика, построенная таким образом, называется естественной. Изменяя другие параметры можно получить искусственную механическую характеристику.

Полученные результаты дают возможность проанализировать и согласовать механические свойства самого двигателя и рабочего механизма.

Электромеханическая характеристика

Она являет собой зависимость угловой скорости вращения от тока статора. Используя несколько опорных точек можно построить электромеханическую характеристику. Номинальный ток рассчитывается по формуле:

Ток холостого хода составляет 30—40% от номинального.

Формула расчета при критическом скольжении:

Ток в начальный момент пуска:

Все значения отражают электромеханическую характеристику.

Рабочие характеристики

Рабочие характеристики асинхронного электродвигателя — это взаимосвязь нескольких параметров от полезной мощности P2. В их число входят: частота вращения самого ротора n2, момент на валу М, скольжение S, ток статора I1, расходуемая мощность P, коэффициент мощности СОSφ и КПД.

Причем частота электрического тока и напряжение неизменны, в отличие от нагрузки.

Как правило, рабочие характеристики асинхронного двигателя строятся в диапазоне значений скольжения от 0 до значения, превышающего номинальное на 10%. Это зона, где машина работает устойчиво.

Частота вращения ротора n2 уменьшается при возрастании нагрузки на валу. Но эти изменения не превышают 5%. Ток I1 растет, поскольку при последующем увеличении нагрузки его активная составляющая превышает реактивную.

СОSφ при холостом ходе мал. Но затем он возрастает. При повышенных нагрузках СОSφ уменьшается из-за возрастающего внутри обмотки ротора реактивного сопротивления.

КПД холостого хода равен 0. С увеличением нагрузки наблюдается его резкий рост, а впоследствии, снижение.

Источник

Adblock
detector