Контроль количества оборотов двигателя

ТАХОМЕТР В АВТОМОБИЛЕ: ПРИНЦИП ДЕЙСТВИЯ, ФУНКЦИИ И ДЛЯ ЧЕГО НУЖЕН?

Добрый день, сегодня мы узнаем, что называется автомобильным тахометром, какие показатели он отображает на приборной панели и для чего необходим каждому транспортному средству. Кроме того, расскажем, про основные функции, которые выполняет этот не маловажный автомобильный индикатор и его принцип функционирования в той или иной машине. В заключении мы поговорим о том, какие существуют виды автомобильных тахометров и чем они отличаются друг от друга.

Практически в каждом автомобиле на приборной панели имеется специальный индикатор под названием тахометр. Многие автолюбители и владельцы транспортных средств даже не догадываются для чего и зачем необходим данный индикатор? Тахометром называется измерительный прибор, который предназначен для подсчета частоты вращения различных вращающих деталей транспортного средства, таких как валы, диски, роторы и прочие механизмы. Относительно легкового автомобиля, тахометр измеряет количество оборотов двигателя в единицу времени, как правило за 1 минуту.

Как правило, тахометры помимо своего датчика скорости вращения обладают показывающим прибором, который называется индикатором, состоящим из 2-ух частей связанных электрической или аналоговой связью. Специалисты по обслуживанию и ремонту транспортных средств тахометром называют специальный прибор для измерения скорости вращения коленчатого вала мотора. Индикатор, то есть указатель на приборной панели является вторичным устройством автомобиля и располагается рядом со спидометром. Отметим, что тахометр был изобретен американским ученым-инженером, Кертисом Виддером в 1903 году.

Говоря простыми словами автомобильный тахометр – это своеобразный прибор, который устанавливается на подавляющее большинство современных транспортных средств для подсчета частоты коленчатого вала двигателя внутреннего сгорания. Основной единицей измерения вращения являются обороты в минуту. Для водителя данный индикатор отображает частоту вращения мотора и необходим для того, чтобы управляющий машиной не превышал максимально допустимые обороты двигателя. Кроме этого, данный показатель дает возможность водителю понимать, когда необходимо переключать передачу на повышающую или наоборот на понижающую в автомобилях оснащенных механической или полумеханической коробками передач.

Главной функцией любого тахометра является облегчение выбора нужной и правильной передачи коробки передач. Данное устройство позволяет продлить ресурс и повысить надежность мотора транспортного средства. Заметим, что когда стрелка тахометра начинает приближаться к красной (критической для мотора) зоне, по рекомендациям автопроизводителей, необходимо производить переключение передачи на повышающую. Кроме того, тахометр применяется еще для регулировочных и ремонтных работ на холостом ходу, а также для немедленного контроля частоты вращения вала коленчатого типа мотора в движении.

Основным принципом функционирования любого тахометра является регулирование и регистрация числа импульсов, которые в него поступают от множества датчиков вращения. Полученные и замеренные показатели преобразуются в специальные величины. Как правило, такими величинами выступают часы, минуты, секунды и метры. Однако в основном все измерение происходит в сочетании количества оборотов того или иного измеряемого узла к минуте времени.

Читайте также:  Двигатель при холодном пуске детонирует

Все тахометры устроены таким образом, что они предусматривают обнуление полученных и собранных показателей. Отметим, что точность величин отображаемых на том или ином тахометре довольно условна и в среднем составляет около 400 оборотов в минуту. Электронные же тахометры, которые считаются наиболее эффективными и точными производят измерение количества оборотов с точностью до 150 оборотов в минуту.

Все тахометры, которые сегодня устанавливают на автомобильных заводах в разные модели транспортных средств делятся на 2 два основных вида : цифровые и аналоговые.

Что касается тахометра цифрового вида, то он выполнен в виде электронного табло, на котором отображается необходимая информация (величина), то есть готовые подсчеты оборотов коленчатого вала и двигателя внутреннего сгорания. Такой прибор намного эффективней аналогового при операциях с электронными блоками зажигания, а также для ремонта или настройки узлов двигателя. По надежности и долговечности цифровой тахометр практически ничем не уступает своему конкуренту, механическому прибору.

Аналоговый или механический тахометр отображает число (величину) оборотов мотора при помощи перемещающейся стрелки по циферблату. Сегодня большинство серийных автомобилей оснащаются механическими тахометрами, так как они дешевле в производстве и установке, а также немного надежней цифровых.

Функционирование аналогового тахометра происходит по принципу электронного (цифрового) прибора. В механическом тахометре сигнал от коленчатого вала передается по проводке на специальную микросхему, которая и двигает стрелку по размеченной шкале циферблата.

По типу или методу установки тахометры делятся на штатные и выносные. Как правило, тахометры выносного типа в основном применяются в автомобильном спорте. Такие тахометры необходимы для более точной коррекции и калибровки оборотов мотора транспортного средства, когда переключение скоростей происходит при определенном показателе оборотов двигателя. Выносные тахометры практически всегда оснащаются специальным сигнализатором, который указывает на достижение определенного количества оборотов коленчатого вала.

В заключении отметим, что прибор располагающийся на приборной панели, который называется тахометром играет ключевую роль для правильного переключения скоростей в автомобиле, а также помогает продлить ресурс, как трансмиссии, так и двигателя транспортного средства. Кроме того, стоит заметить, что удобней пользоваться аналоговым или механическим тахометром, потому что глаз человека намного быстрее воспринимает привычные показатели в виде поворачивающейся стрелки по циферблату, чем цифровые величины. Высокая точность, которую дает электронный тахометр, как правило, во время движения совсем не нужна водителю.

Источник

Изменение оборотов асинхронного двигателя. Разбор способов регулирования.

Благодаря своей простоте исполнения, относительной дешевизне и надежности трехфазные двигатели широко используются в хозяйстве и производстве. Во многих исполнительных механизмах применяют всевозможные типы асинхронных двигателей . Для широкого спектра применения АД, необходимо изменять и регулировать скорость вращения вала двигателя. Регулировка скорости АД производят несколькими способами. Их мы сейчас и рассмотрим.

  1. Механические регулирование. Путем изменения передаточного числа в редукторах.
  2. Электрическое регулирование. Изменением нескольких параметров питающего напряжения.

Рассмотрим электрическое изменение скорости АД, как более точный и распространённый способ регулирования.

Управление электрическими параметрами позволяет производить плавный запуск двигателя, поддерживать заданные параметры скорости или момента асинхронного мотора.

Читайте также:  Двигатель ест масло и дымит присадки какие

Параметры с помощью которых управляют мотором:

  • Частотой тока питающей сети.
  • Величиной тока в цепях мотора.
  • Напряжением на двигателе.

Самым распространённым асинхронным двигателем является мотор беличье колесо, двигатель с короткозамкнутым ротором. Для управления вращением, в этом типе электрических машин, применяют несколько видов воздействия.

  • Изменение частоты поля статора.
  • Управление величиной скольжения, изменяя напряжение питания.

Регулирование частотой

Специальные устройства, преобразователи частоты (другие названия инвертор, частотник, драйвер), подключаются к электрической машине. Путем выпрямления напряжения питания, преобразователь частоты внутри себя формирует необходимые величины частоты и напряжения, и подает их на электрический двигатель.

Необходимые параметры для управления АД преобразователь рассчитывает самостоятельно, согласно внутренним алгоритмам, запрограммированным производителем устройства.

Преимущества регулирование частотой .

  • Достигается плавное регулирование частоты вращения электромотора.
  • Изменение скорости и направление вращения двигателя.
  • Автоматическое поддержание требуемых параметров.
  • Экономичность системы управления.

Единственный недостаток, с которым можно смирится, это необходимость в приобретении частотника. Цены на такие устройства совсем незаоблачные, и в пределах 150 уе, можно обзавестись преобразователем для 2 кВт двигателя.

Регулирование оборотов изменением числа пар полюсов

Специальные многоскоростные двигатели со сложной обмоткой регулируются путем изменения количества активных полюсов на статоре. Обмотки полюсов разбиты на группы, и чередуются, путем коммутации обмотки подключаются, то параллельно, то последовательно.

Положительные моменты данного способа.

  • Высокий КПД мотора.
  • Жесткие механические выходные параметры.

К недостаткам такого управления, можно отнести высокую стоимость электрической машин, а также значительный вес и габариты такого двигателя. Изменение оборотов происходит ступенькой 1500-3000 об/мин.

Асинхронные двигатели с фазным ротором

Основной способ управления АД с фазным ротором — изменение величины скольжения между статором и ротором.

Регулирование с помощью напряжения

Через специальные автотрансформаторы ЛАТР, путем изменения напряжения на обмотках двигателя, производят регулировку оборотов вала.

Данный способ так же подходит и к АД с короткозамкнутым ротором. Таким способ можно регулировать в пределах от минимума до номинальных параметров двигателя.

Установка активного сопротивления в цепи ротора

Переменное реостатное сопротивление или набор сопротивлений в цепи ротора воздействует на ток и поле ротора. Изменяя таким образом величину скольжения и количество оборотов двигателя.

Чем больше сопротивление, тем меньше ток, тем больше величина скольжения АД и меньше скорость.

Достоинства такого регулирования.

  1. Большой диапазон регулирования оборотами электрической машины.
  2. Мягкая выходная характеристика мотора.

Недостатки такого способа.

  1. Уменьшение КПД двигателя.
  2. Ухудшение рабочих характеристик механизма.

Моторы с двойным питанием через вентильные устройства

Регулировка мощности и оборотов в АД с фазным ротором происходит путем изменения величины скольжения. Управление крупными, специальными машинами происходит путем подачи и регулировкой величины ЭДС, на ротор от отдельного источника напряжения.

Эпилог

При всех своих достоинствах асинхронные машины имеют существенный недостаток, это рывок ротора при подаче напряжения. Такие режимы опасны как для самого двигателя, так и для приводных механизмов. Поскольку во время пуска АД, ток в обмотках двигателя приравнивается к короткому замыканию. А рывок вала разбивает подшипники, шлицы, передаточные устройства. Поэтому пуск АД стараются производить плавным стартом. А именно:

  • Запуск через ЛАТР.
  • Разгон и работа АД, через переключение обмоток двигателя звезда-треугольник.
  • Использование устройств управления, таких как частотный преобразователь.
Читайте также:  Яркость фар и обороты двигателя

Источник

Датчик оборотов двигателя для контроллера

Понадобилось на работе контролировать обороты двигателя. Решили использовать датчик Холла. На муфту установленную на валу двигателя приклеили пару неодимовых магнитов. Для датчика Холла сделали схему на компараторе, чтобы фиксировать моменты прохождения магнита напротив датчика. Схема приведена на рис.1


Рис. 1 Принципиальная схема тахометра

Описание работы

Датчик Холла AHSS49 на каждый проход магнита, закрепленного на валу двигателя формирует импульс амплитудой около 1 вольта, со смещением относительно земляной шины на +2,5 В.

Полученный сигнал поступает на вход компаратора IC1 LM311, который формирует управляющие импульсы для выходной опто-развязки OC1 PC817, выход которой присоединяется ко входу контроллера, подтянутому через сопротивление 1-2 кОм к питанию контроллера. В промышленных контроллерах, такие резисторы предустановлены и требуется только конфигурирование входных цепей. Порог срабатывания компаратора IC1 настроен на напряжение 2,6 В. Настраивая компаратор на более высокое напряжение можно получить более узкие импульсы на выходе — это связано с тем, что импульсы на выходе датчика Холла имеют форму близкую к треугольной.

Конденсаторы С1, С2 предназначены для снижения импульсных помех и исключения ложных срабатываний компаратора.

Схема была смакетирована на самодельной монтажной плате см. рис.2 Для публикации была подготовлена разводка печатной платы см. Приложения к статье.


Рис.2 Макет схемы усиления сигнала датчика Холла

Установка датчика около муфты вала двигателя см.рис.3 Датчик Холла был установлен таким образом, чтоб при прохождении магнитов установленных на муфте они оказывались на расстоянии пимерно 5 мм напротив датчика Холла. При установке на валу двух магнитов результирующая частота на выходе платы удваивается. При установке 4 магнитов возрастает в 4 раза. Большее число магнитов устанавливается для подсчета частоты вращения низко-оборотных двигателей. Соответственно, при измерении частоты вращения двигателя результат делится на число магнитов установленных на валу двигателя.


Рис.3 Установка датчика на кронштейне вблизи муфты на валу двигателя

Выход тахометра может быть организован несколькими способами в зависимости от решаемых задач

Схема приведенная на рис. 1 при работе с промышленными контроллерами может не дать устойчивого срабатывания на каждый импульс поскольку 2 p-n перехода опто-развязки PC817 при полном открытии будут давать падение напряжения около 1 В. И , в этом случае, дискретные входы пром.контроллера выполненные на КМОП микросхемах будут срабатывать неустойчиво, в этом случае имеет смысл реализовать схему выхода на полевом N-канальном транзисторе. Вариант схемы с выходом на полевом N-канальном транзисторе приведен на рис.4 . Для управления полевым транзистором пришлось задействовать дополнительный вход контроллера (клемма Х1). В случае если входов контроллера для этого не хватает, можно использовать дополнительный источник питания + 5В, подключив его к клемме Х1. Рабочий вход (клемма Х2) замыкается полевым транзистором и сформированные импульсы поступают на вход контроллера Х2.


Рис.4 Вариант схемы с выходом на полевом N-канальном транзисторе с дополнительной гальванической развязкой

Если дополнительная гальваническая развязка выхода не нужна, можно использовать схему рис.5


Рис.5 Вариант схемы с выходом на полевом N-канальном транзисторе без дополнительной опторазвязки

Рис. 6 Осциллограмма выходного сигнала для варианта схемы см. рис. 4

Источник

Adblock
detector