Конспект что такое двигатель

Конспект занятия «Устройство двигателя внутреннего сгорания и принцип его работы»
план-конспект занятия по теме

Знакомство с устройством двигателя

Отслеживание в ходе работы двигателя за его частями и анализирование принципа работы

Развитие внимательности, воображения

Скачать:

Вложение Размер
konspekt_zanyatiya_dvs.docx 791.25 КБ

Предварительный просмотр:

Раздел «Карт. Общее устройство»

Тема : «Устройство и работа двигателя внутреннего сгорания ».

Разработала: Кириллова Екатерина Вячеславовна,

педагог дополнительного образования

Раздел «Карт. Общее устройство»

Тема : «Устройство и работа двигателя внутреннего сгорания ».

Форма проведения: лекция

Цель занятия: узнать из чего состоит двигатель, понять принцип его работы и взаимодействие отдельных частей, наглядно увидеть его работу

  • Знакомство с устройством двигателя
  • Отслеживание в ходе работы двигателя за его частями и анализирование принципа работы
  • Воспитание внимательности, развитие воображения
  • Класс, оборудованный ПК, макетами ДВС, плакатами и иным наглядным материалом;
  • Видео-презентация «Работа ДВС», раздаточный материал – схема «Устройство ДВС»
  • Карт
  1. Организационный момент (5 мин.).
  2. Мотивационный момент. Для чего нам это надо знать(10 мин.).
  3. Объяснение темы, занятия (30 мин.).
  4. Рефлексия. Перерыв (10 мин.).
  5. Объяснение темы, занятия (30 мин)
  6. Подведение итогов (5 мин)
  • Приветствие (Здравствуйте, ребята).
  • Общение с детьми на тему «Как у них дела,что нового,интересного» — настрой на позитивное восприятие новой темы и всего занятия
  • Отметка присутствующих в журнале
  • Тема и цель занятия (Объявить).

2. Мотивационный момент. Введение в тему занятия

На этом занятии мы с вами познакомимся с устройством и работой двигателя внутреннего сгорания, узнаем из чего состоит, как работает, за счет чего работает. Спортсмену картингисту необходимо знать устройство досконально для того, чтобы самому услышать или увидеть неисправность, а в некоторых случаях и самостоятельно устранить. Прежде всего пилот сам себе механик или настройщик гоночного болида. Так же эти знания пригодятся и в дальнейшей жизни если столкнетесь с поломкой двигателя на любом автотранспортном средстве передвижения. Углубленное изучение этих процессов работы влечет за собой изучение таких точных наук, как физики , химии, математики, сопромата и геометрии

3. Объяснение темы занятия .

Лекция с наглядной демонстрацией работы.

В качестве силовой установки на картах используют карбюраторные бензиновые двигатели внутреннего сгорания.

Двигатели внутреннего сгорания делятся на два типа :

2-х тактные 4-х тактные

1.Отличаются количеством рабочих тактов

2. Подачей топлива :

Самотеком принудительный забор топливо за счет бензонасоса

3. Наличие клапанов :

С клапанами без, их роль выполняет поршень

4. Рабочим объемом, выраженным в см.куб.

5. По типу охлаждения :

Системы, относящиеся к двигателю :

— система выпуска отработанных газов

Итак, цилиндр двигателя.

Состоит из рубашки, отлитой из алюминиевого сплава, в которую запрессована чугунная гильза. В цилиндре расположены впускной. Выпускной и перепускной каналы. Рубашка цилиндра и головка имеет оребрение для наилучшего принудительного воздушного охлаждения. Цилиндры и головки двигателя с водяным охлаждением не имеют ребер, а внутри рубашки и головки расположены каналы для протока охлаждающей воды.

Отлита полностью из алюминиевого сплава. Верхняя часть головки называется камерой сгорания.

Состоит из поршня, колец, шатуна, пальца кривошипа, щек коленвала, полуосей, подшипников и сальников

Поршень изготовлен методом литья под давлением из алюминиевого сплава с высоким содержанием кремния. В верхней части поршня установлено 1 стальное хромированное поршневое кольцо. Внутри поршень имеет 2 бобышки с отверстиями для поршневого пальца, с помощью которого поршень соединяется с шатуном. В нижней части поршня (юбка) сделаны вырезы для пропуска горючей смеси в перепускные каналы. При нагреве двигателя поршень расширяется

-Раздаем раздаточный материал схема — «устройство ДВС»

4. Рефлексия. Перерыв

Физкультминутка. Отдыхаем. Делаем разминочные упражнения.

5. Объяснение темы занятия .

Лекция с наглядной демонстрацией работы.

«Принцип работы двигателя внутреннего сгорания»

Рассмотрим 2-х тактный двигатель.

В 2х тактных двигателях все рабочие циклы происходят втечении одного оборота коленвала за 2 оси такта. У Двигателя этого типа отсутствуют клапана – их роль выполняет поршень.

Весь рабочий цикл в двигателе осуществляется за 2 такта. 1й такт сжатия, 2й такт рабочего хода. Далее цикл повторяется.

В отличие от 4-х тактного двигателя в 2-х тактном двигателе все процессы, составляющие рабочий цикл (наполнение, сжатие, сгорание, расширение и выпуск) происходят за 2 такта, т.е. когда поршень совершает движение от ВМТ к НМТ и от НМТ к ВМТ, — всего за 1 оборот коленчатого вала (360° его поворота).

При движении поршня от ВМТ к НМТ объем между поршнем и головкой цилиндра увеличивается, а объем, состоящий из объема кривошипной камеры и объема под поршнем уменьшается. При движении поршня от НМТ к ВМТ объем в кривошипной камере увеличивается, а объем над поршнем уменьшается.

Рассмотрим 1-й такт двигателя

Поршень движется от ВМТ к НМТ.

  • сначала нижняя кромка поршня перекрывает впускное окно, соединяющее источник свежей бензо-воздушной смеси (карбюратор) с кривошипной камерой;
  • затем верхняя кромка поршня открывает выпускное окно;
  • затем верхняя кромка поршня открывает перепускной канал.

При этом происходит следующее:

  • сжатие свежей смеси в кривошипной камере (после закрытия впускного окна);
  • догорание смеси и расширение газов (до открытия выпускного окна);
  • выпуск отработавших газов (после открытия выпускного окна до открытия перепускного канала);
  • выпуск отработавших газов и наполнение цилиндра сжатой свежей смесью из кривошипной камеры через перепускной канал (после открытия этого канала).

2-й такт. Поршень движется от НМТ к ВМТ . При этом газораспределение происходит в обратном порядке: закрывается перепускной канал, закрывается выпускной канал и, наконец, открывается впускной канал.

Происходят следующие процессы:

  • до закрытия перепускного канала продолжается наполнение цилиндра;
  • до закрытия выпускного канала происходит частичный выброс свежего заряда из цилиндра;
  • после закрытия выпускного канала свежая смесь в цилиндре сжимается и при нахождении поршня вблизи ВМТ поджигается свечей зажигания;
  • после открытия впускного канала свежая смесь по ступает в кривошипную камеру под действием разре жения, образовавшегося там при движении поршня к ВМТ.

Примечание
Процессы, происходящие в цилиндре двигателя внутреннего сгорания, совершаются в следующей последовательности: наполнение, сжатие, сгорание, расширение и выпуск.

Такт сжатия . Такт сжатия. Поршень перемещается от нижней мертвой точки поршня (в этом положении поршень находится на рис. 2, далее это положение называем сокращенно НМТ) к верхней мертвой точке поршня (положение поршня на рис.3, далее ВМТ), перекрывая сначала продувочное 2, а затем выпускное 3 окна. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере 1 вследствие ее герметичности и после того как поршень перекрывает продувочные окна 2, под поршнем создается разряжение, под действием которого из карбюратора через впускное окно и открывающийся клапан поступает горючая смесь в кривошипную камеру.

Такт рабочего хода

2. Такт рабочего хода. При положении поршня около ВМТ сжатая рабочая смесь (1 на рис. 3) воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ , при этом расширяющиеся газы совершают полезную работу. Одновременно, опускаясь вниз, поршень создает высокое давление в кривошипной камере (сжимая топливо-воздушную смесь в ней). Под действием давления клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор и затем в карбюратор.

Когда поршень дойдет до выпускного окна (1 на рис. 4), оно открывается и начнется выпуск отработавших газов в атмосферу, давление в цилиндре понижается. При дальнейшем перемещении поршень открывает продувочное окно (1 на рис. 5) и сжатая в кривошипной камере горючая смесь поступает по каналу (2 на рис. 5), заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.

— Просмотр видеоролика «Работа ДВС»

— Заводка двигателя на карте, слушаем работу

— Анализ проделанной работы и изученного материала.

— Затем ребята отвечают на наводящие вопросы для закрепления темы

РАЗДАТОЧНЫЙ МАТЕРИАЛ К ЗАНЯТИЮ

Раздел «Карт. Общее устройство»

Тема : «Устройство и работа двигателя внутреннего сгорания ».

Схема «Устройство ДВС»

Спасибо за внимание!

По теме: методические разработки, презентации и конспекты

Моя разработка предназначена для обучения специалистов «тракторист машинист сельскохозяйственного производства».Данная разработка раскрывает следующие вопросы:1.Порядок организации урока п.

Методическая разработка открытого урока по МКД.01.02 Эксплуатация и техническое обслуживание сельскохозяйственных машин и оборудования по теме: «Общее устройство и работа двигателя внутреннего сг.

МДК. 01.01. Устройство автомобилей. Урок №2Содержание:1. Определение ДВС2. Системы и механизмы ДВС3. Схема ДВС4. Классификация ДВС.

Презентация учебных занятий по разделу «Двигатели внутреннего сгорания».

Презентация учебных занятий по разделу «Двигатели внутреннего сгорания».

знакомство (под руководством преподавате¬ля) с общим устройством двигателя, его механизмами и системами; определение числа тактов двигателя и последовательности работы цилиндров; составление по задани.

Источник

Двигатель внутреннего сгорания — устройство, принцип работы и классификация

Вокруг активно говорят про электокары, но двигатель внутреннего сгорания (ДВС) никуда не исчезает. Почему? О принципе работы и конструкции двигателей внутреннего сгорания , плюсах и минусах ДВС – в нашем материале.

Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает, благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).

Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  • Блок цилиндров . Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  • Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).

Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  • Система питания . В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  • Система смазки . Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  • Система охлаждения . Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.

Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  • Поршень в цилиндре движется вниз.
  • Открывается впускной клапан.
  • В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  • Поршень поднимается.
  • Выпускной клапан закрывается.
  • Поршень сжимает воздух.
  • Поршень доходит до верхней мертвой точки.
  • Срабатывает свеча зажигания.
  • Открывается выпускной клапан.
  • Поршень начинает двигаться вверх.
  • Выхлопные газы выдавливаются в выпускной коллектор.

Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE.

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.

Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  • Такт выпуска.
  • Такт сжатия воздуха.
  • Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  • Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.

Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).

Классификация двигателей

Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

Классификация двигателей в зависимости от рабочего цикла

В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов:

  • Ориентированные на цикл Отто . Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
  • Ориентированные на цикл Дизеля . Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.

А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.

Классификация двигателей в зависимости от конструкции

  • Поршневой . Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
  • Роторные (двигатели Ванкеля) . Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

Классификация двигателей по принципу подачи воздуха

Подача воздуха также разделяет ДВС на два класса :

  • Атмосферные . При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
  • Турбокомпрессорные . Организована дополнительная подкачка воздуха в камеру сгорания.

Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.

Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

Преимущества ДВС

  • Удобство . Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  • Высокая скорость заправки двигателя топливом .
  • Длительный ресурс работы . Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе

4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.

  • Компактность . Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.
  • Недостатки ДВС

    При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

    Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

    Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

    Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

    Источник

    Читайте также:  Регуляторная характеристика двигателя постоянной мощности
    ВСЕ О ДВИГАТЕЛЕ
    Adblock
    detector