- Конденсатор для пуска электродвигателя
- Что такое конденсатор
- Описание разновидностей конденсаторов
- Выбор емкости
- Для рабочего конденсатора
- Для пускового конденсатора
- Простые способы подключения электродвигателя
- Схема подключения «треугольник»
- Схема подключения «звезда»
- Рабочее напряжение
- Использование электролитических конденсаторов
- Как подобрать конденсатор для трехфазного электродвигателя
- Как подобрать пусковой конденсатор для однофазного электромотора
- Почему однофазный электродвигатель запускают через конденсатор
- История одного ремонта: зачем насосу конденсатор?
- Немного теории — зачем этот круглый бочонок?
- Простой ремонт — если насос (станок, компрессор) не крутит
- Назначение и подключение пусковых конденсаторов для электродвигателей
- Назначение и преимущества
- Схемы подключения
- Выбор пускового конденсатора для электродвигателя
- Обзор моделей
Конденсатор для пуска электродвигателя
Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.
Что такое конденсатор
Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.
Широко распространены следующие виды накопителей электрического заряда:
- Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
- Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
- Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.
Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.
Описание разновидностей конденсаторов
Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.
Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.
Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.
Различные виды конденсаторов
Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.
Выбор емкости
С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.
Для рабочего конденсатора
Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.
На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.
Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.
Для пускового конденсатора
Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.
Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.
Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.
Простые способы подключения электродвигателя
Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.
Частотный преобразователь станет экономически эффективным лишь при большом объеме использования оборудования.
При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем
Подключение двигателя по схемам «звезда» и «треугольник»
При реализации подключения этими способами важно свести к минимуму потери по мощности.
Схема подключения «треугольник»
Схема достаточно простая, для облегчения понимания обозначим контакты мотора символами A — ноль, B — рабочий и C — фазовый
Сетевой шнур подсоединяется коричневым проводником к контакту A, туда же следует подсоединить один из выводов конденсатора. К контакту И подсоединяется второй вывод прибора, а синий проводник сетевого шнура — к контакту С.
В случае небольшой мощности электромотора, не превышающей 1,5 киловатта, допустимо подключать только один конденсатор, пусковой при этом не нужен.
Если же мощность выше и нагрузка на валу значительная, то используют два параллельно соединенных прибора.
Схема подключения «звезда»
В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».
С этой целью снимаются перемычки и контактам присваивают условные обозначения от A до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.
Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.
При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.
Рабочее напряжение
После емкости напряжение является важнейшим параметром. Если взять слишком большой запас по напряжению — сильно вырастут габариты, вес и цена всего устройства. Еще хуже – взять устройства, которым не хватает рабочего напряжения. Такое использование приведет к их быстрому износу, выходу из строя, пробою. При этом возможно возгорание или даже взрыв.
Оптимальный запас по напряжению — 15-20%.
Важно! Для конденсаторов с диэлектриком из бумаги в цепях с переменным напряжением номинальное напряжение, указанное для постоянного тока, нужно поделить на 3.
Если указано 600 вольт, то в цепях переменного тока безопасно применять такие конденсаторы можно до 300 вольт.
Использование электролитических конденсаторов
Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.
Разновидности устройства электролитического конденсатора
Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.
Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.
Как подобрать конденсатор для трехфазного электродвигателя
Для вычисления емкости основного конденсатора применяют формулу:
- k- коэффициент, принимаемый за 4800 при схеме «треугольник» и 2800 при схеме «звезда»;
- Iφ-ток статора, его берут из паспорта или таблички на корпусе;
- U- напряжение сети.
Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.
Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.
Емкость пускового накопителя принимают в 2-3 раза больше основного.
Подключение трехфазного электродвигателя к сети
После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.
Как подобрать пусковой конденсатор для однофазного электромотора
До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.
При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.
Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.
Конструкция асинхронного однофазного электродвигателя
Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.
Почему однофазный электродвигатель запускают через конденсатор
Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.
В трехфазном двигателе обмотки и так размещены под углами 120 ° . Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить пусковой момент вращения.
История одного ремонта: зачем насосу конденсатор?
Рассказ о небольшой, но важной детали , из-за которой может не работать ваш насос или другой агрегат с двигателем. Чинится просто — главное знать, что сделать !
Немного теории — зачем этот круглый бочонок?
Любой асинхронный двигатель — а это вентиляторы, станки, насосы, подъёмники и компрессоры, работает по простому принципу: в неподвижной обмотке, точнее системе обмоток, создаётся крутящееся магнитное поле , которое «тащит» за собой подвижный ротор — так получается преобразование электрической энергии в механическую.
Создать крутящееся поле с тремя фазами просто — подключаем на каждую обмотку свою фазу и готово. Но с одной фазой , то есть обычным напряжением 220 Вольт, придётся пойти на хитрость . Между любыми двумя обмотками подключается конденсатор — специальная деталь, накапливающая и отдающая электричество.
Если подключить к оставшимся концам 220 Вольт, энергия конденсатора создаст «толчок», запускающий ротор, а дальше он будет крутиться уже по инерции — достаточно будет перепада магнитного поля между нулём и фазой.
Само-собой, если конденсатор испортится, например потеряет ёмкость , его энергии будет недостаточно для запуска. Ротор будет стоять на месте, громко гудеть и расходовать огромное количество энергии — в 5 раз больше номинального тока!
Простой ремонт — если насос (станок, компрессор) не крутит
Ваш насос или другой агрегат включается, гудит, но мотор не крутит? Скорее всего вышел из строя конденсатор. Заменить его очень просто — снимите крышку двигателя и найдите круглый бочонок — это и есть наш виновник. На его корпусе указано напряжение, обычно 450 Вольт и самое главное — ёмкость . В нашем случае, на насосе Джилекс, ёмкость была равно 10 мкФ (микрофарад).
Купите или, как сделали мы, выньте подходящий конденсатор из «донора», его ёмкость может отличаться на 20% от номинала, например нам подошёл бы 8 — 12 мкФ, но мы вынули его из точно такого же насоса, так что совпадение было полным.
Само-собой, после замены насос начал работать как часы. Не откладывайте этот ремонт — мотор, застревающий на запуске перегревается и может выйти из строя. В этом случае ремонт окажется намного дороже — придётся менять или перематывать двигатель.
Спасибо за просмотр и удачного ремонта! Если вам пригодилась эта статья — поставьте палец вверх!
Назначение и подключение пусковых конденсаторов для электродвигателей
Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.
Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?
Все конденсаторы, в том числе и пусковые, имеют следующие особенности:
- В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
- Большая емкость при малых габаритных размерах – особенность полярных накопителей.
- Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.
Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.
Назначение и преимущества
Используются конденсаторы рассматриваемого типа в системе подключения асинхронного двигателя. В данном случае, он работает только на момент пуска, до набора рабочей скорости.
Наличие подобного элемента в системе определяет следующее:
- Пусковая емкость позволяет приблизить состояние электрического поля к круговому.
- Проводится значительное повышение показателя магнитного потока.
- Повышается пусковой момент, значительно улучшается работа двигателя.
Без наличия этого элемента в системе, срок службы двигателя значительно уменьшается. Это связано с тем, что сложный пуск приводит к определенным сложностям.
Преимущества сети, которая имеет подобный элемент, заключаются в следующем:
- Более простой пуск двигателя.
- Срок службы двигателя значительно больше.
Пусковой конденсатор работает на протяжении нескольких секунд на момент старта двигателя.
Схемы подключения
схема подключения электродвигателя с пусковым конденсатором
Большее распространение получила схема, которая имеет в сети пусковой конденсатор.
Данная схема имеет определенные нюансы:
- Пусковая обмоткаи конденсатор включаются на момент старта двигателя.
- Дополнительная обмотка работает небольшое время.
- Термореле включается в цепь для защиты от перегрева дополнительной обмотки.
При необходимости обеспечения высокого момента во время пуска, в цепь включается пусковой конденсатор, который подключается вместе с рабочим. Стоит отметить, что довольно часто его емкость определяется опытным путем для достижения наибольшего пускового момента. При этом, согласно проведенным измерениям, величина его емкости должна быть в 2-3 раза больше.
К основным моментам создания цепи питания электродвигателя, можно отнести следующее:
- От источника тока, 1 ветка идет на рабочий конденсатор. Он работает на протяжении всего времени, поэтому и получил подобное название.
- Перед ним есть разветвление, которое идет на выключатель. Кроме выключателя может использоваться и другой элемент, который проводит пуск двигателя.
- После выключателя устанавливается пусковой конденсатор. Он срабатывает в течение нескольких секунд, пока ротор не наберет обороты.
- Оба конденсатора идут к двигателю.
Подобным образом можно провести подключение однофазного электродвигателя.
Выбор пускового конденсатора для электродвигателя
Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.
Для проведения расчета следует знать и ввести нижеприведенные показатели:
- Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
- Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
- Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
- Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
- КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.
Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.
Провести подобный расчет можно самостоятельно.
Для этого можно воспользоваться следующими формулами:
- Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
- Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
- После вычисления тока можно найти показатель емкости рабочего конденсатора.
- Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.
При выборе, стоит также учесть нижеприведенные нюансы:
- Интервал рабочей температуры.
- Возможное отклонение от расчетной емкости.
- Сопротивление изоляции.
- Тангенс угла потерь.
Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.
Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:
- Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
- Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.
Обзор моделей
Существует несколько популярных моделей, которые можно встретить в продаже.
Стоит отметить, что эти модели отличаются не по емкости, а по виду конструкции:
- Металлизированные полипропиленовые варианты исполнения марки СВВ-60. Стоимость подобного варианта исполнения около 300 рублей.
- Пленочные марки НТС стоят несколько дешевле. При одинаковой емкости, стоимость составляет около 200 рублей.
- Э92 – продукция отечественных производителей. Их стоимость небольшая – порядком 120-150 рублей при той же емкости.
Существуют и другие модели, зачастую они отличаются типом используемого диэлектрика и видом изоляционного материала.