Компрессор авиационного двигателя для чего

Как устроен стандартный турбореактивный (ТРД) двигатель? Отвечает авиатехник

Стандартная схема турбореактивного двигателя выглядит следующим образом: входное устройство, компрессор, камера сгорания, газовая турбина и конечно же — выходное устройство.

Входное устройство ТРД служит для подвода воздуха к компрессору двигателя. За счет наличия входного устройства, происходит повышение давления воздуха перед компрессором.

Далее происходит повышение давления воздуха в самом компрессоре. На ТРД применяются центробежные и осевые компрессоры.

Для осевого компрессора характерны следующие процессы: при вращении ротора осевого компрессора, его рабочие лопатки воздействуют на поток воздуха, закручивая его, после чего поток двигается вдоль оси в сторону выхода из компрессора.

При работе центробежного компрессора, его рабочее колесо вращается, поток воздуха в этот момент попадает на его лопатки. Под действием центробежных сил воздух движется к периферии.

Осевые компрессоры нашли широкое применение в современной авиации.

Осевой компрессор состоит из ротора (часть, которая вращается) и статора (неподвижная часть компрессора). Ротор состоит из нескольких рядов рабочих лопаток, расположенных по окружности. Чередуются вдоль оси вращения.

Существуют три типа роторов: барабанные, дисковые и барабаннодисковые.

Статор компрессора состоит из кольцевого набора профилированных лопаток. Крепятся к корпусу. Таким образом у компрессора образуются ступени, которые состоят из неподвижных лопаток (спрямляющий аппарат) и ряда рабочих лопаток.

В современной авиации используются многоступенчатые компрессоры, которые способствуют увеличению процесса сжатия воздуха.

Ступени компрессора устанавливаются таким образом, чтобы воздух на выходе из одной ступени плавно обтекал лопатки следующей ступени. Направление воздуха зависит от расположения спрямляющего аппарата. Также, перед компрессором устанавливается направляющий аппарат, который, в свою очередь, аналогично СА отвечает за направление потока воздуха в компрессор. Далеко не на всех ТРД имеется в наличии направляющий аппарат.

Одним из главных элементов ТРД является камера сгорания. Она расположена за компрессором. Существует несколько типов КС: трубчатые, кольцевые и трубчато-кольцевые.

Трубчатая КС состоит из жаровой трубы и наружного кожуха, соединенных между собой. В передней части камеры сгорания устанавливаются топливные форсунки и завихритель, который служит для стабилизации пламени.

В жаровой трубе имеются отверстия для подвода воздуха, которые уменьшают перегрев.

Воспламенение ТВС происходит за счет специальных запальных устройств. Жаровые трубы между собой соединяются с помощью патрубков, которые обеспечивают поджигание смеси сразу во всех камерах.

Кольцевая КС выполняется в форме кольцевой полости, которая образуется наружным и внутренним кожухами камеры. В передней части кольцевого канала располагается жаровая труба, в носовой части — завихрители и форсунки.

Трубчато-кольцевая КС состоит из внутреннего и наружнего кожухов, которые образуют кольцевое пространство, внутри которого имеются индивидуальные жаровые трубы.

Для осуществления привода компрессора турбореактивного двигателя служит газовая турбина (осевая на современных двигателях). Могут быть одноступенчатыми и многоступенчатыми (до 6 ступеней). Турбина состоит из нескольких рабочих колес с рабочими лопатками (диски), а также основным узлом турбины является сопловой (направляющий) аппарат.

Рабочие колеса турбины крепятся к валу, образуя ротор. Перед рабочими лопатками каждого диска устанавливаются неподвижные сопловые аппараты. Также как и с компрессором, в совокупности эти элементы образуют ступени турбины.

Выпускное устройство состоит из выпускной трубы внутреннего конуса, стойки и реактивного сопла. Существуют сопла с регулируемым и нерегулируемым выходным сечением.

Про работу ТРД я расскажу в одной из следующих статей!

Если вам понравился данный материал, поддержите его пальцем вверх! Подписывайтесь на канал! Спасибо 🙂

Источник

Компрессор авиационного двигателя для чего

ОСЕВОЙ КОМПРЕССОР В АВИАЦИОННЫХ ТУРБОРЕАКТИВНЫХ ДВИГАТЕЛЯХ

Осевой компрессор — лопаточная машина, которая засасывает воздух из атмосферы, сжимает его и принудительно подает (нагнетает) в камеры сгорания. Он состоит из двух элементов: неподвижного корпуса, где крепятся спрямляющие лопатки, и вращающегося ротора, несущего рабочие лопатки (рис. 4).

Рис. 4. Ротор и корпус 11-ти ступенчатого осевого компрессора

Сочетание одного ряда подвижных рабочих лопаток и одного ряда неподвижных спрямляющих лопаток назы­вается ступенью осевого компрессора .

Воздух всасывается в осевой компрессор через кольцевую щель, образуемую корпусом и ротором, и при сжатии дви жется параллельно оси вращения ротора, потому компрессор и называется осевым.

Читайте также:  Сколько масла залить в двигатель соляриса

Процесс сжатия воздуха в осевом компрессоре состоит из ряда последовательных процессов сжатия его в каждой ступени.

Рис. 5. Сжатие воздуха в осевом компрессоре

Воздух, сжатый в первой ступени, перегоняется во вто­рую ступень, где сжимается, перегоняется в третью ступень и сжимается и т. д., пока не пройдет сжатие во всех сту­пенях компрессора. Высота лопаток ступеней 2, 3, 4, 5 и т. д. уменьшается, так как удельный объем воздуха вслед­ствие сжатия его уменьшается.

В каждой ступени воздух сжимается незначительно поэтому для получения давления воздуха на выходе из ком­прессора порядка 5 — 7 кг/см 2 осевые компрессоры современ­ных ТРД имеют 8 — 12 ступеней.

Схематически повышение давления воздуха в осевом компрессоре показано на рис.5.

В осевом компрессоре каждая ступень имеет свою сте­пень сжатия (для разных ступеней она может быть численно различной). Степень сжатия ступени — это отношение дав­ления воздуха за ступенью к давлению воздуха до ступени:

Где Р ЗА – давление воздуха за ступенью компрессора, Р ДО – давление воздуха до ступени компрессора.

Численно ε СТУП = 1,20 — 1,35 (для тех ступеней, где скорость движения воздуха не превышает скорости звука). Степень сжатия осевого компрессора — это отношение (давления воздуха, выходящего из последней ступени ком­прессора, к давлению воздуха, входящего в первую ступень компрессора.

Для выполненных осевых компрессоров степень сжатия равна 6,2 — 8.

Познакомимся с принципом работы ступени осевого ком­прессора.

Каждая ступень осевого компрессора состоит из вращаю­щегося рабочего колеса и неподвижного спрямляющего аппарата.

Иногда перед первой ступенью современных осевых ком­прессоров устанавливается еще один ряд лопаток — входной направляющий аппарат или входное устройство.

Работа каждого из этих устройств в процессе сжатия воздуха различна, поэтому рассмотрим ее раздельно.

А. Входной направляющий аппарат

Воздух, входящий в компрессор со скоростью с 1 движется параллельно оси компрессора. Попадая в каналы, образуе­мые лопатками входного устройства, частицы воздуха изме­ряют направление движения — они отклоняются в сторону вращения рабочего колеса (рис. 6, скорость с 1 ) . Отклоне­ние потока воздуха от осевого направления движения назы­вается “закруткой” потока воздуха.

Предварительная закрутка потока воздуха по направле­нию вращения колеса позволяет увеличить окружную ско­рость колеса и получить в ступени больший напор.

Таким образом, назначение входного устройства состоит в следующем: создать наиболее выгодное направление потока воздуха на входе в рабочее колесо и этим улучшить работу первой ступени.

Лопатки входного устройства иногда делают управляе­мыми — при изменении числа оборотов компрессора спе­циальный автомат поворачивает лопатки и этим изменяя величину закрутки потока воздуха, чтобы сохранить наибо­лее выгодное, безударное направление потока воздуха на входе в колесо.

Рис. 6. Треугольники скоростей воздуха в ступени

Б. Рабочее колесо

Газовая турбина вращает ротор рабочего колеса комп peccopa , а лопатки колеса передают полученную энергию потоку воздуха.

Частицы, воздуха со скоростью с 1 подходят к лопаткам рабочего колеса (см. рис. 6). Рабочая лопатка вращается со скоростью u , равной окружной скорости вращения колеса.

Если бы поток воздуха был неподвижен, а двигались только рабочие лопатки, то скорость движения частиц воздуха относительно лопаток была бы – u .

Но поток воздуха имеет скорость с 1 . В результате сложе­ния скоростей с 1 и — u частицы воздуха приобретают отно­сительную скорость w 1 (скорость, с которой поток воздуха движется относительно лопаток).

Скорости с 1 , — u , w 1 образуют треугольник скоростей на входе в рабочее колесо ступени. Треугольник скоростей на входе изменяется в зависимости от величины секундного расхода воздуха через компрессор (изменяется скорость с 1 ) и от скорости вращения колеса компрессора (изменяется скорость и ).

Форма лопаток рабочего колеса и их взаимное располо­жение подобраны так, что между лопатками образуются расширяющиеся каналы.

Воздух, двигаясь в расширяющемся канале, уменьшает свою скорость движения, поэтому относительная скорость на выходе из канала w 2 меньше относительной скорости воздуха w 1 на входе в канал.

За счет уменьшения относительной скорости давление воздуха в каналах колеса повышается.

Читайте также:  Чему равна средняя мощность двигателя автомобиля

Рабочие лопатки сжимают воздух, поворачивают поток воздуха и увеличивают абсолютную скорость движения воз­духа до величины с 2 . Абсолютная скорость воздуха на вы­ходе из рабочего с 2 колеса больше скорости на входе с 1 на 50—70 м/сек за счет энергии, получаемой воздухом от рабо­чих лопаток.

Таким образом, энергия, получаемая рабочим колесом, расходуется на сжатие воздуха, на увеличение его скоро­стной энергии и на преодоление гидравлических потерь в ка­налах между рабочими лопатками.

В. Спрямляющий аппарат

Лопатки спрямляющего аппарата неподвижно закреплены в корпусе компрессора. Они имеют хорошо обтекаемую форму и специально изогнуты для изменения направления потока воздуха. Между лопатками спрямляющего аппарата получаются расширяющиеся каналы — диффузоры.

Частицы воздуха со скоростью w 2 (рис. 6) отбра­сываются рабочим колесом к спрямляющему аппарату. Вра­щаясь вместе с колесом, они получил окружную ско­рость — и. Попадая в каналы спрямляющего аппарата, частицы воздуха тормозятся, их окружная скорость умень­шается. Поэтому на треугольнике скоростей на входе в спрямляющий аппарат окружная скорость и направлена в другую сторону, чем было на треугольнике скоростей на входе в рабочие колесо, хотя величина ее осталась без изме­нения.

В результате сложения скоростей w 2 , и и получается абсолютная скорость c 2 . Имея эту скорость, поток воздуха входит в каналы спрямляющего аппарата.

В каналах спрямляющего аппарата скорость потока воз­духа уменьшается от с 2 до с ВЫХ , а давление увеличивается.

Н апишем для этого случая уравнение, которым мы поль­зовались при рассмотрении входа воздуха в двигатель во время полета:

Скорость на выходе из направляющего аппарата с ВЫХ меньше скорости на входе с 2 . Поэтому дробь, стоящая в скобках, всегда будет иметь положительную величину, т. е. Рвых будет больше Р 2 .

Лопатки спрямляющего аппарата изогнуты так, чтобы направление скорости с ВЫХ с которой воздух покидает ступень, совпадало или немного отличалось от направления ско­рости с 1 с которой воздух входит в ступень. Этим обеспечи­вается подход воздуха под нужным углом к лопаткам рабо­чего колеса следующей ступени.

Скоростная энергия воздуха при его движении в спрям­ляющем аппарате расходуется на совершение работы сжатия воздуха, на поворот потока воздуха и на преодоление гидрав­лических потерь в каналах спрямляющего аппарата.

Окружная скорость и различна по высоте лопатки. У корня лопатки она меньше, чем у ее конца. Поэтому тре­угольники скоростей будут различными по высоте лопатки.

Источник

КОМПРЕССОР

НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ
ЦЕНТРОБЕЖНОГО КОМПРЕССОРА

Компрессор газотурбинного двигателя предназначен для сжатия воздуха и подачи его в камеру сгорания. Сжатие воздуха необходимо для более полного преоб­разования подводимого в камеру сгорания тепла в ки­нетическую энергию газового потока. Это наглядно вид­но из формулы, выражающей зависимость термическо­го коэффициента полезного действия двигателя (щ) от степени повышения давления компрессора

где лк — степень повышения давления в компрессоре; к — показатель адиабаты.

Анализ формулы показывает, что при отсутствии сжатия (лк=1) термический КПД равен нулю и, сле­довательно, введенное в двигатель тепло в результате сгорания топлива не идет на увеличение кинетической энергии газа. С увеличением степени повышения дав­ления повышается термический КПД, возрастает эф­фективность использования подводимого в двигатель тепла. Поэтому одним из основных требований, предъ­являемых к компрессорам, наряду с требованиями обес­печения надежной и устойчивой работы на всех эксплуа­тационных* режимах, предъявляются требования обес­печить возможность получения больших степеней сжа­тия при малой массе и габаритах.

Возможность удовлетворения этих требований в зна­чительной степени определяется конструкцией компрес­сора. По конструкции компрессоры современных авиационных двигателей разделяются на два типа: центробежные и осевые.

Центробежные компрессоры имеют целый ряд пре­имуществ перед осевыми: простота конструкции и ма­лая трудоемкость в изготовлении, удовлетворительная характеристика при переменных режимах работы, воз­можность получения больших степеней повышения дав­ления в одной ступени (яСт = 3…6).

Основные недостатки центробежных компрессоров по сравнению с осевыми — меньший КПД, небольшая пропускная способность и большие габаритные разме­ры в поперечном направлении.

Осевые компрессоры имеют более высокий коэффи­циент полезного действия, большую пропускную способ­ность, выполняются многоступенчатыми, а потому име­ют более высокую степень повышения давления и, сле­довательно, более высокий КПД, однако они более сложны и дороги в изготовлении, менее устойчивы в газодинамическом отношении и менее надежны в экс­плуатации.

Читайте также:  Как влияет зазор в свечах на работу двигателя при работе на газе

Высокая надежность, простота конструкции и боль­шая газодинамическая устойчивость предопределили использование на двигателе М701 центробежного ком­прессора.

Центробежный компрессор (рис. 85) состоит из ро­тора и статора. Лопатки вращающегося направляюще­го аппарата (воздухозаборника) совместно с лопатками рабочего колеса образуют межлопаточные каналы и вместе с корпусом — проточную часть компрессора.

Рабочее колесо с вращающимся направляющим ап­паратом (ВНА) и валом образуют ротор компрессора, а корпус компрессора с диффузором — его статор. Вра­щающийся направляющий аппарат — это спрофилиро­ванный лопаточный венец, обеспечивающий безударный вход воздуха на лопатки рабочего колеса.

На входе во ВНА величина и направление относи­тельной скорости W определяются величинами абсо­лютной скорости С и изменяющейся по высоте лопаток окружной скорости U (рис. 86).

Для обеспечения безударного входа углы загиба ло­паток ВНА делают близкими к углам направле­ния относительной скорости Wi. Поскольку направле­ние относительной скорости меняется по высоте лопат­ки, углы загиба лопаток ВНА также изменяются про­порционально высоте лопатки, увеличиваясь от втулки к периферии.

Рис. 85. Про­дольный раз­рез компрессо­ра двигателя М70ІС-500:

1—входной кор­пус компрессо­ра; 2—передняя стенка компрес­сора; 3—перед­нее опорное кольцо лопаточ­ного диффузо­ра; 4 — фланец отбора воздуха для охлажде­ния узла тур­бины; 5—заднее опорное кольцо лопаточного диффузора; 6— крыльчатка компрессора;

7 — передний вал; 8 — основ­ной вал ротора; 9 — силовой ко­нус; 10—задний корпус компрес­сора; 11 — гор­ловина заднего корпуса ком­прессора; 12— нижний узел крепления дви­гателя; 13—ло­патка диффузо­ра; 14—штифт; 15 — передний подшипник с корпусом пе­реднего уплот­нения; 16—вра­щающийся на­правляющий ап­парат крыль­чатки компрес­сора

В межлопаточных каналах происходит поворот воз­душного потока, вращающийся направляющий аппарат вовлекает воздушный поток во вращение, закручивает его и сообщает ему кинетическую энергию вращатель­ного движения.

Рис. 86. Треугольник ско-
ростей воздуха на входе В;
колесо центробежного ком-
прессора

В межлопаточных каналах колеса центро­бежного компрессора.: поток воздуха, посту — ^ лающий из ВНА, дви­жется в направлении от центра к периферии с непрерывным возра­станием окружной ско­рости. На двигателе М701 окружная ско­рость колеса компрес­сора меняется от 130 м/с у втулки до 450 м/с на периферии (на максимальном режиме работы дви­гателя). Вращение потока вызывает появление центро­бежных сил, повышающих давление воздуха. Таким образом, из колеса выходит закрученный воздушный поток с большой скоростью, т. е. обладающий большой кинетической энергией.

Из колеса воздушный поток поступает в диффузор, в котором полученная кинетическая энергия превраща­ется в работу сжатия. Поэтому на выходе из диффу­зора скорость воздуха уменьшается, а давление и тем­пература увеличиваются.

Процесс сжатия воздуха в компрессоре происходит с определенными потерями. Так, вследствие вязкости воздуха при вращении колеса происходит трение возду­ха, окружающего колесо, и воздуха, движущегося по межлопаточным каналам, о стенки колеса. Это трение создает дополнительный момент сопротивления враще­нию колеса и требует на его преодоление затрат допол­нительной работы, которая входит составной частью в работу, затрачиваемую на вращение компрессора. Ос­новную часть потерь вызывает трение торцевых повен ч — ностей лопаток колеса и воздуха, движущегося по э:» му колесу, о воздух, находящийся в осевых зазорах между колесом и корпусом компрессора.

Кроме трения воздуха, увлеченного во вращение ло­патками колеса, о стенки корпуса значительное влия­ние на величину потерь оказывает перетекание воздуха по зазорам между торцами лопаток и стенкой корпуса. Это приводит к возникновению дополнительных гидрав­лических потерь. Перетекание воздуха обусловливается наличием разности давлений с обеих сторон лопатки колеса, которая, в свою очередь, является следствием радиального относительного движения воздуха в коле­се и абсолютного движения по спирали с возрастающей окружной скоростью, вызывающих появление сил, дей­ствующих перпендикулярно относительной скорости в сторону, обратную направлению движения. Действие этих сил создает перепад давления по обе стороны ло­паток, что является источником возникновения момен­та сопротивления, на преодоление которого необходимо затратить работу. Поскольку величина зазора между лопатками колеса компрессора и корпусом существенно влияет на величину потерь, а следовательно, и на коэф­фициент полезного действия компрессора, этот зазор конструктивно стараются сделать минимальным.

Источник

ВСЕ О ДВИГАТЕЛЕ
Adblock
detector