Количество водорода для работы двигателя

Авто на водороде: принцип работы, плюсы и минусы, перспективы

Принцип работы двигателей на водороде и электричестве похожи, однако есть одно существенное отличие – способ вырабатывания энергии, которая заставляет транспортное средство начать движение.

Как и электромобиль, авто с водородным двигателем питается электричеством. Но, если АКБ электроавто заряжается от розетки, то водородный двигатель применяет энергию. Она вырабатывается в следствии физико-химической реакции, которая происходит в автомобиле. Чтоб реакция удалась, транспортное средство заправляется водородом, который, под действием катализатора и кислорода, производит электрический ток. Продукт реакции снабжает мотор и аккумулятор энергией. Заправка таких авто происходит на специально обустроенных станциях, которые могут сами производить водород через реакцию электролиза воды.

Ремонтом машин с таким типом двигателя называют замену топливного элемента, исчерпавшего свой ресурс. Наиболее часто заменяют катализаторную мембрану, которая занимается выработкой электричества.

Для приверженцев транспортных средств на водороде существуют некоторые привлекательные преимущества. Пропуская газообразный водород через протонообменную мембрану, электроэнергия может быть произведена с использованием только воды в качестве побочного продукта. Технология предусматривает вырабатывание большого количества энергии, но пока еще не вошла в нашу повседневную жизнь.

Несколько фактов о водороде

Водород является наиболее распространенным элементом во Вселенной и присутствует в большом количестве в наших океанах. Также он легкодоступный благодаря электролизу воды. Водород имеет как преимущества, так и несколько ключевых недостатков. Все это влияет на его потенциальное применение в транспортных средствах.

Плюсы использования этого элемента:

  • его легко найти – у каждой молекулы воды есть два атома водорода, готовых к использованию;
  • водород имеет большой потенциал в области аккумуляторных технологий – бак будет заправлен уже через несколько минут;
  • в отличие от ДВС, водородные двигатели практически бесшумны.

Минусы применения водорода:

  • он очень легко воспламеняется;
  • для хранения водорода компактным и практичным способом требуется подвергать его огромному давлению, что еще более усугубляет ситуацию.

К тому же, есть еще одна проблема автомобилей на таком двигателе: владельцам водородных заправочных станций не выгодно содержать оборудование из-за небольшого количества автомобилей, которым необходим водород. Это замкнутый круг, ведь на сегодняшний день имеется мало заправочных станций, из-за чего спрос на водородные транспортные средства невелик.

Перспектива водородных авто

Несмотря на это, на рынке есть водородные автомобили. В настоящее время Hyundai продает свой новый автомобиль на топливных элементах Nexo в Европе, когда в Австралии и Калифорнии их количество ограничено. Toyota занимается продажей Mirai на рынках с подходящей инфраструктурой с 2014 года, а Honda FCX Clarity также доступна по ряду программ ограниченной аренды с 2008 года. Автопроизводители не рискуют продавать эти автомобили в районы без водородных заправок, потому как это практически нецелесообразно.

Источник

Устройство, принцип работы и дальнейшие перспективы водородных двигателей

Уже который год подряд со всех экранов нам рассказывают о том, что запасы нефти подходят к концу. И скоро придётся массово переходить на новые источники энергии, которые смогут полноценно заменить так называемое чёрное золото.

Пока никакого острого дефицита нефти мир не испытывает. Но всё же работа над поисками альтернативного топлива ведётся очень активно. Одним из них стал водород. Водородные автомобильные двигатели уже сегодня существуют, причём их не так мало, как может показаться. Этот вид топлива характеризуется незначительной токсичностью и при этом способен похвастаться превосходным коэффициентом полезного действия.

Главное достоинство водорода в том, что это практически неограниченный ресурс, в отличие от той же нефти. Но чтобы понимать возможности, суть и перспективы водородных моторов, нужно изучить их более детально.

Немного истории

В 70-х годах прошлого века наблюдался период достаточно острого дефицита горючего, изготовленного на основе нефтепродуктов. Именно тогда инженеры начали проявлять повышенный интерес к такому ресурсу как водород.

Если говорить о самих разработчиках, то первым, кто презентовал автомобильный водородный мотор, оказалась компания Toyota. Их проект появился на выставке только в 1997 году и носил название FCHV. Это был прототип кроссовера, но по тем или иным причинам серийный выпуск так и не начался.

Хотя старт оказался неудачным, автокомпании не остановились, а продолжили исследования и поиски выхода из ситуации. В этом компоненте преуспели японские и корейские производители в лице Honda, Toyota и Hyundai. Также определённые шаги в сторону водородных моторов делают представители General Motors, Nissan, BMW, Volkswagen и Ford.

Пусть к автомобилям это не имеет прямого отношения, но 2016 год стал знаковым, поскольку появился поезд, работающий на водороде. Создали его в компании Alstom. Немцы планируют в ближайшие несколько лет убрать около 4 тысяч своих дизельных локомотивов, и заменить их на водородные составы Coranda iLint. Помимо Германии, эти поезда хочет закупить Дания, Норвегия и ряд других государств.

Водород как горючее

Первым делом хочется понять, что собой представляет двигатель на водороде. А для этого нам необходимо изучить сам водород как эффективный источник энергии, то есть альтернатива привычному нам топливу.

Каждый прекрасно знает, что в обычном двигателе с системой внутреннего сгорания, который работает на бензине, происходит смешивание топлива с воздухом. Затем эта смесь поступает внутрь цилиндров, где и сгорает. Это создаёт энергию для перемещения поршней, что и способствует в итоге движению ТС.

У водорода есть свои нюансы, которые проявляются в следующем:

  • когда сжигается смесь с использованием водорода, на выходе получается только обычный водяной пар;
  • на воспламенение водорода уходит меньше времени, чем в случае с дизельным или традиционным бензиновым топливом;
  • детонационная устойчивость вещества способствует увеличению степени сжатия;
  • показатели теплоотдачи состава превосходят топливовоздушную смесь на 250%;
  • водород является летучим газом, из-за чего он может проникать в малейшие полости и зазоры;
  • лишь некоторые металлы способны справиться с воздействием воспламеняющегося водорода;
  • такое топливо можно хранить в жидком или сжатом агрегатном состоянии;
  • если ёмкость получает пробой или небольшую трещину, всё топливо испаряется довольно быстро;
  • чтобы вступить в реакцию с кислородом, нижний уровень газа составляет 4%;
  • последняя особенность позволяет настраивать необходимые оптимальные режимы для двигателя за счёт дозировки консистенции.
Читайте также:  Как регулировать клапана на 402 двигателе порядок

Если принимать во внимание все рассмотренные особенности, можно с уверенностью сказать, что вариант с использованием чистого водорода в обычном ДВС невозможен. Чтобы добиться желаемого, необходимо обязательно внести некоторые изменения в конструкцию, а также установить дополнительное оборудование.

В чём опасность такого топлива

Водород позиционируется как взрывоопасное вещество. Именно это можно справедливо считать главной опасностью и проблемой всей технологии водородных моторов.

Сочетаясь с окислителем, в качестве которого выступает кислород, увеличивается риск воспламенения, и также возникает угроза взрывов. Исследования показатели, что на воспламенение водорода уходит около десятой доли энергии, требуемой при воспламенении топливовоздушной смеси. Фактически можно обойтись небольшой статической искрой, дабы водород вспыхнул.

Есть ещё одна опасность. Газ невидимый, и даже в процессе горения его практически незаметно. Невидимость огня усложняет возможность бороться с ним.

Нельзя забывать об опасности вещества для самого человека. Находясь в зоне с повышенной концентрацией газа в воздухе, может наступить удушье. А распознать наличие вещества крайне проблематично. Объясняется это отсутствием запаха и цвета. То есть человеческий газ не способен его разглядеть, а нос не может разнюхать.

В качестве последнего аргумента в пользу того, что водород действительно опасен, выступает факт его очень низкой температуры в случае нахождения в сжиженном состоянии. Контакт с таким веществом способен спровоцировать обморожение.

Устройство

На практике схема устройства водородного двигателя напрямую зависит от того, к какому типу он относится.

Существует несколько вариантов моторов, где в качестве топлива применяется водород. При этом делятся они на 3 группы:

  • ТС, конструкция которых предусматривает наличие сразу 2 энергоносителей. Такие автомобили экономичные, могут использовать в работе водород или топливную смесь. Их КПД находится на уровне 90-95%. Если брать тот же дизельный двигатель, его КПД составляет 50%, а бензиновые моторы не могут похвастаться КПД более 35-40%. Подобные машины соответствуют экологическим требованиям Евро 4;
  • Машины с электромоторами, которые питают специальные водородные элементы. В настоящее время существуют двигатели, у которых КПД составляет от 75%;
  • Обычные ТС, где для работы используется смесь или же непосредственно сам чистый водород. Их КПД поднялся ещё на 20%.

Ранее уже был отмечен тот факт, что устройство, то есть конструкция двигателя, питающегося водородом, практически не имеет существенных отличий в сравнении с классическими ДВС на бензине или дизеле. Исключением являются только некоторые элементы и дополнительное оборудование.

Главной отличительной особенностью в плане конструкции и устройства считается способ, который используется для подачи топлива в камеру, а также дальнейшее воспламенение. Если же говорить о преобразовании энергии, которая приводит в движение кривошипно-шатунный механизм, то здесь всё аналогично с традиционными моторами.

Принцип работы

Куда интереснее разобраться в том, как же работают водородные двигатели. Это во многом определит основные особенности подобных силовых установок, а также позволит ответить на некоторые интересующие автолюбителей вопросы.

Чтобы ознакомиться с принципом работы водородного двигателя, следует рассмотреть отдельно два типа установок. Это практически классические ДВС и моторы, имеющие водородные элементы. У каждого из них есть свои отличия и особенности работы.

Теперь рассмотрим два типа двигателей отдельно и изучим принцип их работы.

Системы внутреннего сгорания

Это неплохой и перспективный аналог классическому ДВС, где в качестве рабочей жидкости, то есть топлива, используется водород.

В случае с обычным мотором с системой внутреннего сгорания топливовоздушная смесь сгорает медленнее, нежели в случае с водородом. Топливо оказывается в камере до того, как поршень достигает ВМТ.

Если говорить о водородных аналогах, то тут большую роль играет способность мгновенного воспламенения вещества. Это позволило сместить время, когда происходит впрыск. Делается это в момент движения поршня в обратном направлении. А чтобы мотор мог нормально работать, не требуется большое давление. Тут достаточно не более 4 атмосфер.

При оптимальных условиях водородные ДВС могут работать совместно с системой питания закрытого типа. Это означает, что при формировании топливной смеси не используется кислород, то есть воздух, забираемый из атмосферы. Когда такт сжатия завершается, внутри цилиндра остаётся пар. Он перенаправляется в радиатор, происходит процесс конденсации и появляется вода. Такую систему можно реализовать, если на авто присутствует устройство под названием электролизер. Это девайс, позволяющий отделить водород от воды, чтобы затем создать реакцию с кислородом.

Но на практике реализовать подобные системы не удалось. Это обусловлено тем, что для обеспечения эффективной работы ДВС и уменьшения трения в нём применяют моторное смазочное масло. Масло испаряется и становится составным компонентом выхлопа. В результате в настоящее время кислород крайне необходим в процессе работы водородных силовых установок.

Водородные элементы

Ещё один водородный двигатель, который может применяться для автомобиля, предусматривает использование водородных элементов.

Здесь принцип действия основывается на химических реакциях. На кожухе мотора предусмотрено наличие специально мембраны, способной проводить лишь протоны, а также электродной камеры. Внутри последней располагается анод с катодом.

В секцию с анодом поступает водород, а в катодной камере обеспечивается подача кислорода. При этом на электродах имеется напыление, которое выполняет роль ускорителя реакции или катализатора. Чаще всего в качестве катализаторного напыления используют платину.

Воздействие каталитического компонента способствует тому, что водород теряет свои электроны. Затем протоны проходят через специальную мембрану и поступают на катод. Под действием катализатора образуется самая обычная вода. Электроны, выходящие из анодной камеры, поступают в электросеть, которая при этом подключается к двигателю. Такая схема и создаёт питание для мотора, и обеспечивает его возможность приводить в движение автомобиль.

Топливные водородные элементы отличаются своей способностью создавать электроэнергию для питания электромоторов. Это позволяет заменить классические ДВС и использовать элементы как источник питания бортовой сети на авто.

К применению топливных элементов пришли достаточно давно. Впервые их использовали аж в 1959 году американские инженеры.

На практике эти элементы получили широкое распространение. Можно выделить несколько основных сфер их использования:

  • Автотранспорт. У водородных топливных элементов гораздо более высокий КПД, нежели у стандартного ДВС. При первом испытания коэффициент составил 57%. В настоящее время элементы активно применяются и тестируются в компаниях Honda, Nissan, Volkswagen, Ford и пр.;
  • Железнодорожный транспорт. Около 60% от всех ТС на железной дороге занимают тепловозы. Водородные составы активно внедряются в Японии, США, Германии и иных развитых странах;
  • Морской транспорт. Наиболее распространение водородные элементы получили в составе подводных судов. Сейчас самыми активными разработчиками являются немцы и испанцы;
  • Авиация. Первые летальные машины, где использовались водородные двигатели, разработали и создали ещё 40 лет назад. В настоящее время водородные элементы внедряют в беспилотники.
Читайте также:  Двигатель работает как трактор хонда

Водород как основа работы соответствующих двигателей также применяется в создании велосипедов, мопедов, вилочных погрузчиков, машин для гольфа, тракторов и целого ряда другой техники.

Проблемы эксплуатации ДВС

В настоящий момент водородный двигатель не может в полной мере заменить традиционные моторы для автомобиля. Понимая принцип его работы, нельзя забывать о факторе опасности вещества.

Автопроизводители не смогут поголовно оснащать свои машины мотором, работающим на водороде, пока не устранят ряд препятствий. Главным из них считается сложность получения самого газа. Плюс комплектующие стоят дорого, что в настоящий момент делает производство слишком затратным.

Также есть проблемы с обеспечением надлежащего хранения вещества. Ведь чтобы поддерживать газ в нужном состоянии, требуется постоянно поддерживать температуру на уровне около -253 градусов.

Самым простым способом, который используют для получения газа, является электролиз обычной воды. Для промышленных масштабов нужны огромные энергозатраты на электролиз. С целью повышения рентабельности речь заходит об использовании ядерной энергетики. Но риски слишком высокие, потому инженеры и учёные думают над тем, как отыскать достойную альтернативу.

Чтобы перевозить и хранить полученный газ, применяются очень дорогие материалы и специальные механизмы, обладающие повышенным качеством и соответствующей стоимостью.

В процессе эксплуатации есть и другие сложности и препятствия, среди которых стоит выделить следующие:

  • Опасность взрыва. Если газ начнёт выходить из хранилища или просто из бака авто в условиях закрытого помещения, даже наличие небольшого источника энергии, такого как включённая лампочка в гараже, спровоцирует взрыв. А в случае нагретого воздуха ситуация становится ещё более опасной. Вещество обладает повышенной проницаемостью, что может спровоцировать попадание газа в коллектор выхлопной системы. В этой связи предпочтительнее для водорода использовать роторные двигатели;
  • Хранение. Оно предусматривает применение больших ёмкостей со специальными системами, защищающими от улетучивания. Также требуется защита от механических повреждений. В случае с грузовиками и большими автобусами это не проблема. А вот применительно к легковым авто появляются сложности, поскольку под бак отводится большое количество кубометров;
  • Негативное влияние и разрушение цилиндропоршневой группы. Это становится возможным, когда водород имеет высокую температуру и сталкивается с большими нагрузками. Страдает ЦПГ и смазка. Чтобы исключить эти проблемы, требуется специальный сплав и особые смазывающие компоненты, которые увеличивают стоимость изготовления водородных моторов. Отсюда и высокая цена самих автомобилей.

Проблем объективно много. Насколько они решаемые, говорить сложно. Хотя разработчики уверены, что изменить ситуацию в лучшую сторону возможно. И уже делаются большие шаги, подтверждающие подобные заявления.

Преимущества и недостатки

Для лучшего понимания того, как обстоят дела с водородными моторами сейчас, и насколько перспективными являются двигатели на водородном топливе, следует рассмотреть их сильные и слабые стороны.

Начнём с преимуществ. К ним можно отнести следующие факторы:

  • Доступность топлива. Поскольку газ получают из воды, причём абсолютно из любой, этот ресурс можно считать практически безграничным. Если удастся усовершенствовать электролиз или разработать другую эффективную технологию извлечения Н2 из Н2О, в качестве источника вещества можно будет применять даже сточные воды;
  • Экологическая безопасность. Внедрение таких моторов позволит полностью решить проблему загрязнения машинами окружающей среды. Масштабный переход на водород снизит опасный парниковый эффект. Звучит громко, но это топливо способно спасти нашу планету. Такой выхлоп совершенно безопасен для человека. По сути на выходе из выхлопной трубы получается дистиллированная, очищенная вода. Сотрудники компании Toyota доказали, что эту воду можно пить безо всяких опасений;
  • Опыт. Поскольку разработка водородных моторов ведётся не один десяток лет, целый ряд проблем и ограничений уже удалось преодолеть. Инженеры и учёные не стоят на месте, у технологии есть хорошие перспективы;
  • Универсальность. Водород может применяться не только в ДВС, но и на электромобилях, питая за счёт топливных элементов электромоторы;
  • Двигатели с таким типом топливо создаёт минимальный шум в процессе своей работы;
  • Двигатели становятся более приёмистыми, мощными и производительными, повышается КПД в сравнении с классическими ДВС;
  • Сам водород расходуется в незначительном количестве в процессе эксплуатации авто;
  • Автомобили на таком виде горючего характеризуются большим запасом хода, то есть могут проехать большую дистанцию без дозаправки;
  • Обслуживание ДВС на водороде не сложнее, чем работа с дизельными или бензиновыми двигателями;
  • Высокий потенциал. Тоже большой плюс, который в полной мере проявится, когда удастся исключить хотя бы несколько текущих недостатков технологии.

И тут мы плавно переходим к минусам.

Недостатки у водородных моторов действительно есть. Причём они достаточно существенные и весомые. Эти минусы не позволяют говорить о скором массовом внедрении водорода как замены бензину или дизельному горючему.

  1. Газ сложно извлекать из воды. Хотя водород чуть ли не самый распространённый газ на нашей планете, встретить его в чистом виде проблематично. Он мало весит, из-за чего поднимается и остаётся в самых верхних слоях нашей атмосферы. Газ на атомном уровне вступает в реакцию с другими компонентами, из-за чего мы получаем такие вещества как вода, метан и пр. Пока извлечение водорода из воды является крайне нерентабельным, что стало главным препятствием по внедрению водородных моторов. Цена за 1 литр газа в сжиженном состоянии может составлять от 3-4 до 10-12 долларов.
  2. Дефицит АЗС. Также большой проблемой считается минимальное количество автозаправочных станций, которые предлагают своим клиентам водород. Само оборудование для заправки очень дорогое. Плюс самих машин очень мало.
  3. Высокая стоимость модернизации ДВС. В теории водород можно заправлять в обычные ДВС. Но чтобы применять новый вид горючего, в двигатель требуется внести некоторые изменения. Если всё оставить без изменений, произойдёт падение мощности на 30-40%, и параллельно уменьшится моторесурс. Также водород характеризуется выделением тепла с повышенной температурой, которая быстро начинает разрушать традиционные для нынешних ДВС поршни и клапана. Фактически двигателю приходилось бы работать в режиме постоянных чрезмерных нагрузок. То есть без серьёзной модернизации классический ДВС использовать для работы на водороде нельзя.
  4. Большие цены на материалы. Именно высокая стоимость основных материалов, необходимых для водородных моторов, является ключевым препятствием в вопросе их развития. Платина, выступающая как катализатор, невероятно дорогая, и для обычного автомобилиста недоступная. Потому стоит лишь надеяться на поиски более дешёвых альтернативных материалов.
  5. Взрывоопасность и возможность возникновения пожара. Весомый аргумент, который говорит не в пользу этого типа топлива для двигателей.
  6. Повышение веса автомобиля. Мощные аккумуляторы, преобразователи, более прочные и массивные материалы для двигателя приводят к суммарному заметному увеличению веса ТС.
  7. Проблема хранения. Такое топливо можно хранить при высоком давлении, либо в сжиженном состоянии. У каждого их них есть свои подводные камни и объективные сложности с реализацией хранилища.
Читайте также:  Причины не работы цилиндров дизельных двигателей

Также учёные до конца не понимают, насколько губительным может оказаться водород при его резком увеличении в плане количества для и без того находящегося в плачевном состоянии озонового слоя. Относить это к недостаткам сложно, но и преимуществом точно не назовёшь.

Перспективы

Использование такого газа как водород потенциально может открыть невероятные большие перспективы. Причём здесь речь идёт не только про автомобильный двигатель внутреннего сгорания, работающий на водороде, но и про целый ряд других сфер применения. В их числе авиация, железнодорожный транспорт, морские суда и пр. Помимо применения в ДВС, водород также может использоваться для питания и работы вспомогательной техники, механизмов и разного оборудования.

Уже сейчас ведущие автопроизводители уделяют большое внимание возможности внедрить в массовое производство водородные ДВС. Среди них такие гиганты как Volkswagen, General Motors, Toyota, BMW и пр.

В настоящее время существуют автомобили, под капотом которых находятся водородные силовые установки. При этом они отлично функционируют, мало чем уступают традиционным ДВС на бензине и дизтопливе, а также обладают некоторыми существенными преимуществами.

Чтобы говорить о серьёзных перспективах и массовом внедрении водорода, требуется решить хотя бы несколько главных недостатков. Эксперты уверены, что при наличии способа уменьшить стоимость газа, а также при постройке большего количества АЗС и обучении кадров для обслуживания водородных моторов, множество таких машин обязательно станут нормой на дорогах.

Технологии-конкуренты

Автопроизводители пока не могут или не хотят в полной мере сконцентрироваться на водородных технологиях, поскольку у неё есть ряд серьёзных конкурентов.

Можно выделить следующие виды моторов, которые не дают водородным ДВС и топливным элементам на водороде развиваться, совершенствоваться и массово выходить на рынок.

  1. Гибридные установки. Это автомобили, способные использовать одновременно несколько источников энергии. Зачастую в машину внедряют обычный ДВС и электромотор. Также бывают варианты, когда обычный двигатель на бензине работает вместе с узлом, питающимся сжатым воздухом.
  2. Электрокары. Сейчас активно развиваются и распространяются полностью электрические авто. Это машины, которые двигаются за счёт работы одного или нескольких электромоторов. Они питаются от специальных аккумуляторов или топливных элементов. ДВС здесь не используют.
  3. Жидкий азот. Вещество помещается в специальные ёмкости. Сам процесс работы выглядит так. Топливо нагревается за счёт работы специального механизма. Это приводит к испарению и образованию газа высокого давления. Этот газ идёт в двигатель, где воздействует на поршни или роторы, передавая свою энергию. Пока такие авто не получили широкого распространения.
  4. Сжатый воздух. Здесь основой всей силовой установки выступает пневмодвигатель. Пневматический привод заставляет машину двигаться. Топливовоздушная смесь заменена на сжатый воздух. Эта система является частью современных гибридных автомобилей.

У водорода достаточно много конкурентов. И в настоящий момент самым главным соперником справедливо считается электродвигатель.

Насколько сильно ситуация изменится в ближайшие несколько лет, говорить сложно. О каких-то резких изменениях и открытиях говорить вряд ли стоит. Но есть вероятность того, что через 10-20 лет водород станет куда более эффективным и доступным. Тем самым начнут появляться серийные водородные автомобили в большом количестве. Примерно так сейчас обстоят дела с электрокарами.

Современные водородные автомобили

Поскольку водород стал достаточно перспективным и привлекательным вариантом топлива для автомобилей, многие автокомпании серьёзно заинтересовались в создании водородных машин.

Нельзя сказать, что их огромное количество. Но несколько ярких представителей выделить можно. К ним относятся:

  • Fuel Cell Cedan или просто FCV. Это автомобиль от компании Toyota. Они специально поместили ёмкость для водорода под пол, чтобы сэкономить пространство в салоне и багажнике. Легковой автомобиль предназначен для городской эксплуатации. Купить его можно за 68 тысяч долларов;
  • Разработка компании BMW. Фактически это BMW 7 серии, куда поместили особый двигатель, способный переключаться с одного вида топлива на другой;
  • Авторами этого проекта выступают инженеры компании Honda. Машина способна проехать на водороде около 600 километров. Заправка занимает 3-6 минут;
  • Машина от компании Toyota. Причём это серийный автомобиль, которые начали продавать в Японии ещё с 2014 года, а в США машина появилась в 2015 году. Заправляется полный бак водородом в течение 5 минут, а запас хода составляет 500 километров;
  • H-Tron. Это концепт в исполнении компании Audi, который немцы продемонстрировали в рамках автосалона в городе Детройт. Производитель уверяет, что модель рабочая, может проехать на полном баке 600 километров, а до 100 километров в час разгоняется за 7 секунд.

У таких компаний как Hyundai, Lexus, BMW, Mercedes и Ford есть определённые прототипы, задумки и пресс-релизы, связанные с выпуском их собственных водородных автомобилей. Но тут речь идёт только о перспективах. Те же концерны Lexus и BMW (в сотрудничестве с Toyota) обещают презентовать свои машины в 2020 году. Насколько эти заявления соответствуют действительности, и сможем ли мы увидеть рабочие прототипы или предвестников серийных моделей, говорить сложно.

Водородная технология достаточно спорная и неоднозначная. Имеется ряд преимуществ, перспектив и предпосылок, но в настоящее время реализовать полный потенциал невозможно. Отсутствуют возможности и методы дешёвого извлечения водорода из воды. А это во многом останавливает движение на пути к дальнейшему развитию.

У водородных моторов есть будущее. Но чтобы оно было светлым и перспективным, предстоит проделать огромную работу. Получится или нет, вопрос сложный и практически не имеет однозначного ответа.

Источник

ВСЕ О ДВИГАТЕЛЕ
Adblock
detector