Какое давление в камере сгорания турбореактивного двигателя

Элементы газотурбинного двигателя. Камера сгорания.

Камеры сгорания ГТД предназначаются для подвода теплоты к рабочему телу в двигателе за счет преобразования химической энергии топлива, запасенного на борту летательного аппарата, в тепловую при его сгорании с участием кислорода, содержащегося в воздухе. Двигатей ли для сверхзвуковых самолетов имеют обычно две камеры сгорания:

основную (перед турбиной) и форсажную (перед соплом), включаемую для увеличения тяги Топливом для современных авиационных ГТД служит керосин.

Существует много марок авиационных керосинов, но все они, являясь продуктами переработки нефти, представляют собой смесь углеводородов, в которой содержится 84…86 % (по массе) углерода (С), 14…16 % водорода (Н) и некоторое (очень малое) количество других веществ.

Но поскольку разведанных запасов нефти хватит, по ориентировочным оценкам только на 40…80 лет‚ в настоящее время ведутся интенсивные исследования по применению в качестве топлива для авиации так называемых криогенных (сжиженных при низких температурах) топлив — жидкого метана (СН4), сжиженного природного газа (СПГ), состоящего примерно на 90 % (80.95% в разных месторождениях) из метана и жидкого водорода (Н2).

По оценкам специалистов запасов природного газа и соответственно метана хватит еще более чем на 100 лет‚ а запасы сырья для получения водорода в природе (из воды) практически не ограничены,

Криогенные топлива имеют еще одно преимущество — значительно больший, чем у керосина, хладоресурс, т‚е‚ возможность эффективного охлаждения (с их использованием) элементов конструкции двигателя и летательного аппарата на больших сверхзвуковых и гиперзвуковых скоростях полёта. При этом, благодаря очень быстрой испаряемоети при случайном попадании из баков в окружаюшую среду, их пожароопасность по некоторым оценкам может быть ниже, чем у керосина.

Типы основных камер сгорания и организация процесса горения в них

Основные камеры сгорания авиационных ГТД могут иметь разнообразные формы проточной части И различное конструктивное выполнение. Применяются практически камеры сгорания трех основных типов (рис. 9.3):

а — трубчатые (индивидуальные),

Трубчатая камера сгорания состоит из жаровой трубы, внутри которой организуется процесс горения, и корпуса (кожуха) 2. На двигателях обычно устанавливалось несколько таких камер. В современных авиационных ГТД трубчатые камеры сгорания практически не используются.

В трубчато-кольцевой камере все жаровые трубы заключены в общий корпус, имеющий внутреннюю и наружную поверхности, охватывающие вал двигателя. В кольцевой камере сгорания жаровая труба имеет в сечении форму кольца, также охватывающего вал двигателя.

Важная особенность этих камер состоит в том, что скорость потока воздуха или топливо-воздушной смеси в них (выбираемая с учетом требований К габаритным размерам двигателя) существенно превышает скорость распространения пламени при турбулентном диффузионном гореНИИ. И, если не принять специальных мер, пламя будет унесено потоком за пределы камеры сгорания

Поэтому организация процесса горения топлива в основных камерах ГТД основывается на следующих двух принципах, позволяющих обеспечить устойчивое горение топлива при больших значениях ос И высоких скоростях движения потока в них:

1. Разделение всего потока воздуха на две части , из которых только одна часть (обычно меньшая) подается непосредственно в зону горения (где за счет этого создается необходимый для устойчивого горения состав смеси). А другая часть направляется в обход зоны горения (охлаждая снаружи жаровую трубу) в так называемую зону смешения (перед турбиной), где смешивается с продуктами сгорания, понижая в нужной мере их температуру;

2. Стабилизация пламени в зоне горения путем создания в ней зоны обратных токов, заполненной горячими продуктами сгорания, непрерывно поджигающими свежую горючую смесь.

Конкретные формы реализации этих мероприятий могут быть различными. На рис. 9.4 показана схема одного из вариантов трубчато-кольцевой камеры сгорания. Камера состоит из жаровой трубы 1 и корпуса 2. В передней части жаровой трубы, которую называют фронтовым устройством, размещаются форсунка 3 для подачи топлива и лопаточный завихритель 5. Для уменьшения скорости воздуха в камере на входе в нее (за компрессором) выполняется диффузор 4, благодаря которому скорость воздуха перед фронтовым устройством обычно не превышает 50 м/с.

Читайте также:  Какой двигатель установлен на камри

Подвод первичного и вторичного воздуха в жаровую трубу должен быть организован так, чтобы в зоне горения создавалась нужная структура потока. Эта структура должна обеспечить хорошее смешение топлива с воздухом, создание нужных полей концентраций топлива и наличие мощных обратных токов, обеспечивающих надежное воспламенение свежей смеси на всех режимах работы камеры.

Структура потока в передней части жаровой трубы камеры сгорания с так называемым лопаточным завихрителем показана схематично на рис. 9.5. Воздух поступает сюда через завихритель лопатки которого закручивают поток (подобно лопаткам входного направляющего аппарата компрессора). Далее воздух движется вдоль поверхности жаровой трубы в виде конической вихревой струи

Вихревое движения воздуха приводит к понижению давления в области за завихрителем, вследствие чего в эту область устремляемтся газ из расположенных дальше от фронтового устройства участков жаровой трубы.

В результате здесь возникает зона обратных токов, граница которой показана на рисунке линией 5. Там же показаны эпюры распределения осевых составляющих скорости воздуха (газа) Са.

Топливо-воздушная смесь, образовавшаяся за фронтовым устройством, при запуске двигателя поджигается огненной струей, создаваемой пусковым воспламенителем 6 (см. рис. 9.4). Но в последующем горячие продукты сгорания вовлекаются в зону обратных токов и обеспечивают непрерывное поджигание свежей смеси. Кроме того, горячие газы, циркулирующие в этой зоне, являются источником теплоты, необходимой для быстрого испарения топлива.

Наряду с рассмотренной схемой камеры сгорания с завихрителем и с одной форсункой в каждой жаровой трубе (или с одним рядом форсунок в кольцевой камере) могут использоваться и другие схемы основных камер сгорания — с несколькими форсунками (несколькими рядами форсунок), с другими способами создания зоны обратных токов и т.д. Но общие принципы организации рабочего процесса в них остаются такими же.

Источник

Какое давление в камере сгорания турбореактивного двигателя

КАМЕРА СГОРАНИЯ В АВИАЦИОННЫХ ТУРБОРЕАКТИВНЫХ ДВИГАТЕЛЯХ

Камера сгорания — элемент ТРД, где происходит непре­рывное образование и сгорание топливовоздушной смеси и повышение температуры газов. Камера сгорания является очень ответственным элементом двигателя. От ее устройства и осуществления процесса сгорания зависят экономичность двигателя, надежность работы и длительность эксплуатации как самой камеры сгорания, так и двигателя.

Камера сгорания должна удовлетворять следующим тре­бованиям:

1. Объем камеры сгорания должен обеспечивать возмож­но высокую теплонапряженность, т. е. камера должна иметь малый объем, что уменьшает ее размеры и вес. Под теплонапряженностью камеры сгорания понимают количество тепла, выделяющееся единице объема (1 м 3 ) камеры в течение 1 часа. Ждя современных камер сгорания (середина 50-х) теплонапряженность достигает 150000000 кал/м 3 в час.

2. Топливо в камере сгорания должно сгорать полностью, В современных камерах полнота сгорания достигает 97 — 98%.

3. При запуске двигателя на земле и в воздухе должно обеспечиваться надежное поджигание смеси.

4. Нагретые детали камеры сгорания должны хорошо охлаждаться, это обеспечивает их работу длительное время без дефектов (прогаров, коробления, трещин и нагара от действия пламени).

5. Камера сгорания должна иметь небольшое гидравли­ческое сопротивление движению воздушного потока (давле­ние газов в камере сгорания должно уменьшаться незначи­тельно).

6. В камере должно обеспечиваться устойчивое горение смеси, т.е. не должно быть колебаний, затухания и срывом пламени при всех режимах работы двигателя.

7. Горение должно заканчиваться в жаровой трубе. Факел пламени не должен доходить до лопаток газовой тур­бины во избежание перегрева и обгорания их.

Читайте также:  Выявление причин неисправности двигателя

8. Температура газового потока на выходе из камеры сго­рания должна быть одинаковой по всему сечению, чтобы не получилось местного обгорания или оплавления сопловых лопаток турбины.

На современных ТРД наибольшее распространении получили трубчатые камеры сгорания. Они просты по конструк­ции, надежны о работе и удобны в эксплуатации — легко снимаются для осмотра, ремонта и замены без разборки дви­гатели.

Трубчатая камера сгорания (рис. 23) состоит из внутрен­ней жаровой трубы и внешнего кожуха с горловиной.

Жаровая труба сварена из листов жаростойкого сплава. В передней части жаровой трубы приварены конус для за­бора первичного воздуха, диск и конус с отверстиями для прохода воздуха. В конусе помещается лопаточный завихритель — для придания потоку воздуха вращательного дви­жения.

Внутри завихрителя помещается форсунка, впрыскиваю­щая топливо в завихренный поток воздуха; этим достигается хорошее перемешивание топлива с воздухом.

На конической части жаровой трубы сделаны отверстия большого размера для подвода вторичного воздуха внутрь жаровой трубы.

Жаровые трубы соединяются между собой соединитель­ными патрубками, через которые передается пламя при за­пуске и выравнивается давление газов в соседних камерах сгорания.

Источник

Как устроен стандартный турбореактивный (ТРД) двигатель? Отвечает авиатехник

Стандартная схема турбореактивного двигателя выглядит следующим образом: входное устройство, компрессор, камера сгорания, газовая турбина и конечно же — выходное устройство.

Входное устройство ТРД служит для подвода воздуха к компрессору двигателя. За счет наличия входного устройства, происходит повышение давления воздуха перед компрессором.

Далее происходит повышение давления воздуха в самом компрессоре. На ТРД применяются центробежные и осевые компрессоры.

Для осевого компрессора характерны следующие процессы: при вращении ротора осевого компрессора, его рабочие лопатки воздействуют на поток воздуха, закручивая его, после чего поток двигается вдоль оси в сторону выхода из компрессора.

При работе центробежного компрессора, его рабочее колесо вращается, поток воздуха в этот момент попадает на его лопатки. Под действием центробежных сил воздух движется к периферии.

Осевые компрессоры нашли широкое применение в современной авиации.

Осевой компрессор состоит из ротора (часть, которая вращается) и статора (неподвижная часть компрессора). Ротор состоит из нескольких рядов рабочих лопаток, расположенных по окружности. Чередуются вдоль оси вращения.

Существуют три типа роторов: барабанные, дисковые и барабаннодисковые.

Статор компрессора состоит из кольцевого набора профилированных лопаток. Крепятся к корпусу. Таким образом у компрессора образуются ступени, которые состоят из неподвижных лопаток (спрямляющий аппарат) и ряда рабочих лопаток.

В современной авиации используются многоступенчатые компрессоры, которые способствуют увеличению процесса сжатия воздуха.

Ступени компрессора устанавливаются таким образом, чтобы воздух на выходе из одной ступени плавно обтекал лопатки следующей ступени. Направление воздуха зависит от расположения спрямляющего аппарата. Также, перед компрессором устанавливается направляющий аппарат, который, в свою очередь, аналогично СА отвечает за направление потока воздуха в компрессор. Далеко не на всех ТРД имеется в наличии направляющий аппарат.

Одним из главных элементов ТРД является камера сгорания. Она расположена за компрессором. Существует несколько типов КС: трубчатые, кольцевые и трубчато-кольцевые.

Трубчатая КС состоит из жаровой трубы и наружного кожуха, соединенных между собой. В передней части камеры сгорания устанавливаются топливные форсунки и завихритель, который служит для стабилизации пламени.

В жаровой трубе имеются отверстия для подвода воздуха, которые уменьшают перегрев.

Воспламенение ТВС происходит за счет специальных запальных устройств. Жаровые трубы между собой соединяются с помощью патрубков, которые обеспечивают поджигание смеси сразу во всех камерах.

Кольцевая КС выполняется в форме кольцевой полости, которая образуется наружным и внутренним кожухами камеры. В передней части кольцевого канала располагается жаровая труба, в носовой части — завихрители и форсунки.

Трубчато-кольцевая КС состоит из внутреннего и наружнего кожухов, которые образуют кольцевое пространство, внутри которого имеются индивидуальные жаровые трубы.

Читайте также:  Фольксваген поло стук поршней холодного двигателя

Для осуществления привода компрессора турбореактивного двигателя служит газовая турбина (осевая на современных двигателях). Могут быть одноступенчатыми и многоступенчатыми (до 6 ступеней). Турбина состоит из нескольких рабочих колес с рабочими лопатками (диски), а также основным узлом турбины является сопловой (направляющий) аппарат.

Рабочие колеса турбины крепятся к валу, образуя ротор. Перед рабочими лопатками каждого диска устанавливаются неподвижные сопловые аппараты. Также как и с компрессором, в совокупности эти элементы образуют ступени турбины.

Выпускное устройство состоит из выпускной трубы внутреннего конуса, стойки и реактивного сопла. Существуют сопла с регулируемым и нерегулируемым выходным сечением.

Про работу ТРД я расскажу в одной из следующих статей!

Если вам понравился данный материал, поддержите его пальцем вверх! Подписывайтесь на канал! Спасибо 🙂

Источник

Какое давление в камере сгорания турбореактивного двигателя

ОСУЩЕСТВЛЕНИЕ ПРОЦЕССА ГОРЕНИЯ В КАМЕРЕ СГОРАНИЯ В АВИАЦИОННЫХ ТУРБОРЕАКТИВНЫХ ДВИГАТЕЛЯХ

Во время работы турбореактивного двигателя а камеру сгорания поступает воздух со скоростью 120 — 170 м/сек.. Осуществить устойчивое горение и полное сгорание топлива при такой скорости воздуха очень трудно, так как поток воздуха сдувает пламя, а бедная смесь плохо поджигается и медленно горит.

Для надежного и быстрого сгорания топливовоздушной смеси в камере сгорания имеется специальная зона горения, расположенная в передней части жаровой трубы.

Первичный воздух (10 — 15% от общего потока) входит внутрь жаровой трубы через отверстия диска и конуса; этому воздуху при помощи завихрителя придается вращательное движение. Воздух от завихрителя поступает в зону горения, где его скорость понижается до 15 — 25 м/сек.

В зоне горения в этот завихренный воздух впрыскивается форсункой топливо, его капельки перемешиваются с воздухом и быстро испаряются. Чем мельче и равномернее распы­лено топливо в воздухе, тем быстрее оно сгорает, при этом увеличивается полнота сгорания. Поэтому в современных ТРД давление впрыска топлива для получения хорошего его распыла достигает 40 — 70 кг/см 2 на номинальном режиме (при работе на земле).

Через боковые отверстия в жаровой трубе в зону горения проходит еще около 5 — 10% воздуха, и в ней образуется тео­ретическая нормальная смесь с α ≈ 1, которая быстро и пол­но сгорает. В зоне горения образуется устойчивый факел пламени с температурой 1800 — 2100° абс. (середина 50 — х).

На цилиндрической части жаровой трубы сделаны не­большие отверстия, через которые входит воздух, изолирую­щий факел пламени от стенок жаровой трубы и охлаждаю­щий жаровую трубу.

Большая часть воздуха — вторичный воздух (75 — 85% от общего потока) обтекает жаровую трубу снаружи и охла­ждает ее, он минует зону горения и не участвует в горении. Вторичный воздух является изолирующим слоем между жа­ровой трубой и кожухом — зоной охлаждения.

В зоне смешения (перемешивания) жаровая труба имеет большие отверстия, через которые вторичный воздух направ­ляется внутрь жаровой трубы и “пронизывает” факел пламени, чем достигается хорошее перемешивание воздуха с продуктами сгорания. При перемешивании температура газового потока понижается до 1100 – 1150 0 абс., кроме того, температура и давление отдельных струек газа выравни­ваются. Здесь же происходит догорание частиц несгоревшего топлива, если они не успели сгореть в зоне горения.

Распределение потока воздуха по отдельным сечениям жаровой трубы показано на рис. 24.

Рис. 24. Схема подвода воздуха в жаровую трубу.

Следует иметь в виду, чти повышение температуры и дав­ления воздуха, поступающего в камеру сгорания, улучшает процесс сгорания. Понижение температуры и давления воз­духа на входе в двигатель (при подъеме на высоту) ухуд­шает воспламенение смеси, вызывает неустойчивое горение и даже приводит иногда к остановке двигателя.

Источник

Adblock
detector