Какие тепловые двигатели наиболее экономичные

Виды тепловых двигателей

Теловой двигатель

Ежедневно мы имеем дело с двигателями, приводящими в движение автомобили, корабли, производственную технику, железнодорожные локомотивы и самолеты. Именно появление и широкое использование тепловых машин быстро продвинуло вперед промышленность.

· Тепловой двигатель – тепловая машина, превращающая тепло в механическую энергию, использует теплового решения вещества от температуры. Обычно работа совершается за счет изменения объёма вещества, но иногда используется изменение формы рабочего тела (в твёрдотельных двигателях).

Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давления по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие разницы температур, производится нагревание рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем (например, при сжигании топлива) и охладителем, в роли которой используется окружающая среда.

Миллионы автомобилей на двигателях внутреннего сгорания занимаются перевозом пассажиров и грузов. По железным дорогам ходят мощные тепловозы, по водным траекториям – теплоходы. Самолеты и вертолеты снабжены поршневыми, турбореактивными и турбовинтовыми двигателями. Ракетные двигатели «толкают» в космическое пространство станции, корабли и спутники Земли. Двигатели внутреннего сгорания в сельском хозяйстве устанавливают на комбайнах, насосных станциях, тракторах и прочих объектах.

Применение теплового двигателя

1. Наибольшее значение имеет использование тепловых двигателей (в основном мощных паровых турбин) на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока. Около 80% всей электроэнергии в нашей стране вырабатывается на тепловых электростанциях.

2. Тепловые двигатели (паровые турбины) устанавливают также на атомных электростанциях. На этих станциях для получения пара высокой температуры используется энергия атомных ядер.

3. На всех основных видах современного транспорта преимущественно используются тепловые двигатели. На автомобилях применяют поршневые двигатели внутреннего сгорания с внешним образованием горючей смеси (карбюраторные двигатели) и двигатели с образованием горючей смеси непосредственно внутри цилиндров (дизели). Эти же двигатели устанавливаются на тракторах.

4. На железнодорожном транспорте до середины XX в. основным двигателем была паровая машина. Теперь же главным образом используют тепловозы с дизельными установками и электровозы. Но и электровозы получают энергию от тепловых двигателей электростанций.

5. На водном транспорте используются как двигатели внутреннего сгорания, так и мощные турбины для крупных судов.

6. В авиации на легких самолетах устанавливают поршневые двигатели, а на огромных лайнерах — турбовинтовые и реактивные двигатели, которые также относятся к тепловым двигателям. Реактивные двигатели применяются и на космических ракетах.

7. Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы дешевую электроэнергию и были бы лишены всех видов современного скоростного транспорта

Виды тепловых двигателей

1. Двигатель Стирлинга — тепловая машина, в которой рабочее тело, в виде газа или жидкости, движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочей площадки с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года.

В современной научной литература этот узел называется «регенератором»

Он увеличивает производительность двигателя, удерживая тепло в тёплой части двигателя, в то время как рабочее тело охлаждается. Этот процесс намного повышает эффективность системы. Чаще всего регенератор представляет собой камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа).

Газ, проходя через наполнитель в одну сторону, отдаёт тепло регенератору, а при движении в другую сторону отбирает его. Регенератор может быть внешним по отношению к цилиндрам, а может быть размещён на поршне-вытеснителе в β- и γ-конфигурациях. В последнем случае размеры и вес машины оказываются меньше.

Частично роль регенератора выполняет зазор между вытеснителем и стенками цилиндра (при длинном цилиндре надобность в таком устройстве вообще исчезает, но появляются значительные потери из-за вязкости газа). В α-стирлинге регенератор может быть только внешним. Он устанавливается последовательно с теплообменником, в котором происходит нагрев рабочего тела, со стороны холодного поршня.

2. Паровая машина – тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно – поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу.

Первая паровая машина построена в XVII в. Папеном и представляла цилиндр с поршнем, который поднимался действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году вакуумные паровые машины Севери и Ньюкомена для выкачивания воды из копей. Значительные усовершенствования в вакуумной паровой машине были сделаны Джеймсом Уаттом в 1769 году. Дальнейшее значительное усовершенствование парового двигателя (применение на рабочем ходу пара высокого давления вместо вакуума) было сделано американцем Оливер Эвансом в 1769 году и англичанином Ричардом Тревитиком в 1800 году.

Читайте также:  Двигатель постоянного тока с параллельным возбуждением и его характеристики

3. Поршневой двигатель –двигатель внутреннего сгорания, в котором тепловая энергия расширяющихся газов, образовавшаяся в результате сгорания топлива в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень. Поступательное движение поршня преобразуется во вращение коленчатого вала кривошипно-шатунным механизмом.

Поршневой двигатель внутреннего сгорания сегодня является самым распространённым тепловым двигателем. Он используется для привода средств наземного, воздушного и водного транспорта, боевой, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров, водяных насосов, помп, моторизованного инструмента (бензорезок (бензо-болгарок), газонокосилок, бензопил) и прочих машин, как мобильных, так и стационарных, и производится в мире ежегодно в количестве нескольких десятков миллионов изделий.

Полный цикл работы двигателя складывается из последовательности тактов — однонаправленных поступательных ходов поршня. Различают двухтактные и четырехтактные двигатели.

4. Роторный (турбинный) двигатель внешнего сгорания — примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом, колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия.

Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско — ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще.

Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

5. Роторный (турбинный) двигатель внутреннего сгорания —примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно – реактивные двигатели.

6. Реактивные и ракетные двигатели —представляет собой совмещенный тепловой двигатель и движетель, в нём внутренняя энергия топлива преобразуется в кинетическую энергию реактивной струи разогретого рабочего тела. Реактивные двигатели отбрасывают нагретое рабочее тело с большой скоростью, за счет его проистечения, в соответствии с законом сохранения импульса, образуется реактивная сила, толкающая двигатель в противоположном направлении. В тепловых реактивных двигателях обычно используется химическое топливо в газообразном, жидком или твердом состоянии, порождающее разогретый газ при сгорании.

Воздушно – реактивные двигатели используют газообразный окислитель из окружающей среды, тогда как ракетные двигатели снабжаются запасами всех компонентов рабочего тела с носителя и способны работать в любой среде, в том числе и в безвоздушном пространстве. Используются для приведения в движение самолётов, ракет и космических аппаратов

7. Твердотельные двигатели —такие двигатели используют твёрдый материал (вещество в твёрдой фазе) в качестве рабочего тела. Работа совершается при изменении формы рабочего тела. Позволяют использовать малые перепады температур.

Источник

Почему современные двигатели стали более мощные и экономичные

Новые конструктивные решения, сделали двигатели более мощными и экономичными, но все эти технологии ещё больше запутали большинство автолюбителей, в новых терминах и технологиях. Откуда вы должны знать, когда продавец говорит вам, — что в автомобиле, двигатель имеет — прямой впрыск с турбонаддувом и переменными временными фазами газораспределения, или чистый дизельный двигатель с непрямым впрыском и камерой предварительного сгорания?

Автомобили — чрезвычайно сложные механизмы, если рассматривать их в целом, но отдельные системы и детали часто регулируются несколькими относительно простыми принципами. Если вы не спешите, и не дадите себе запутаться, вы сможете быть удивлены тем, что вы можете все это понять.

Читайте об основах некоторых современных технологиях двигателей, которые помогают повысить мощность и эффективность.

Прямой впрыск топлива в цилиндры, не нов для автомобильного мира, но он является инновационным для массовых бензиновых двигателей. Он был стандартом в дизельных двигателях в течение большого промежутка времени, и отличается от стандартного впрыска топлива, подачей топлива непосредственно в каждый из уже наполненных воздухом цилиндров. Прямой впрыск повышает экономию топлива и, как правило дает больше мощности, по сравнению с двигателем, в котором отсутствует такая система.

Топливная эффективность повышается, потому что, система может более точно регулировать, сколько топлива требуется в каждый промежуток времени, и может учитывать небольшие различия между отдельными цилиндрами. Например, если двигатель находится под легкой нагрузкой (при крейсерской езде по ровной поверхности, или на холостом ходу), форсунки ожидают команду на впрыск до последнего момента, и впрыскивают точно рассчитанное количество топлива. Меньшее потребление топлива приравнивается к большей эффективности.

Читайте также:  Три фазы из одной схема для двигателя

На другом конце спектра преимуществ — стоит мощность. Прямая инъекция топлива, на самом деле, оказывает ещё и охлаждающее воздействие на цилиндр, а двигатели работающие на более холодной воздушно-топливной смеси, выдают больше мощности.

Название такого решения, говорит само за себя. Бензиновые двигатели с этой функцией могут просто отключать некоторые цилиндры, когда требуется меньше энергии, временно уменьшая общий объем двигателя и, таким образом, сжигая меньше топлива. Эта функция обычно применима на двигателях — V6 и V8.

Турбокомпрессоры увеличивают давление внутри цилиндров, вгоняя больше воздуха, тем самым позволяя вырабатывать больше энергии при сжигании такого же количества топлива, по сравнению с аналогичным двигателем без компрессора. Это не делает двигатель более экономичным, но поскольку двигатель меньшего объема может генерировать больше пиковой мощности, а сжигать меньшее количество топлива, то вы легко сможете заметить разницу.

Регулировка промежутков времени работы клапанов

Клапаны открываются и закрываются, чтобы воздух и топливо попадали в цилиндры, а продукты сгорания выпускались, и соответственно различные временные режимы открытия клапанов, дают разные результаты (такие, как увеличение мощности или уменьшение расхода топлива). Традиционно не было возможности изменить такие временные промежутки, поэтому временной выбор устанавливался только один раз, когда двигатель проектировался. Но к счастью, многие современные двигатели, уже могут менять фазы газораспределения, что позволяет использовать временной диапазон низких оборотов двигателя, по умолчанию (для большей экономии), или более высокий временной диапазон для максимальной мощности. Это позволяет двигателю с меньшим объемом производить больше пиковой мощности, что приводит к сокращению расхода топлива или к увеличению мощности.

Несмотря на их превосходную топливную экономичность, дизельные автомобили никогда не были популярным выбором. Это потому, что они по праву заслужили репутацию громких, «вонючих» и медленных машин. С тех пор дизельная технология значительно продвинулась. Уже практически все производители предлагают дизельную альтернативу, но без шума, вони или медлительности.

Старые дизели производили выхлопные газы со значительным количеством оксидов азота (NOx) и твердых частиц (выхлопная пыль или сажа). Последние дизельные катализаторы успешно сократили уровень NOx, делая новые дизели одними из самых чистых автомобилей на дороге. Использование дизельного топлива с минимальным содержанием серы, также поспособствовало дизелям в их экологичности.

Еще одно преимущество заключается в том, что они могут работать на биодизеле, который (если вы сможете найти) получен из отходов растительного масла или (в ближайшие несколько лет) из водорослей, который экологически чист и даже безопасен.

Также, вас могут заинтересовать статьи:

Уважаемые гости — переходите на мой канал, кликнув — Pit Stop , ставьте лайки и не забывайте подписываться (это Вас ни к чему не обяжет, а Вы будете чаще встречать мои статьи в ленте Дзен), впереди ещё будет много нового и интересного!

Источник

Самые экономичные бензиновые двигатели: ТОП-5

Описание и обзор наиболее экономичных бензиновых двигателей: топ-5 моделей, технические характеристики, особенности функционирования, фото. Видео про экономичные автомобили.

Экономичность двигателя является важным критерием при выборе транспортного средства. А поскольку многие автомобилисты рассматривают только бензиновые агрегаты, предлагаем ознакомиться с рейтингом самых экономичных моторов, работающих на бензине.

1. 150-сильный 1.4 TSi

Для многих автовладельцев двигатель TSi объемом 1,4 литра и мощностью 150 л.с. является «классикой жанра». Он выпускается концернами Audi-Volkswagen и отличается небольшим расходом топлива. В автомобильной промышленности этот агрегат также называется EA211.

1.4 TSi – это малолитражный бензиновый двигатель, который широко применяется на моделях компании Volkswagen. Первое использование агрегата практиковалось на моделях Jetta и Golf 5. Его разрабатывали в качестве замены для предыдущей версии EA111, у которой были существенные недостатки.

Основными преимуществами модели является надежность и наличие турбированного нагнетателя. Конструкция оснащается наддувом 1.4 TSi Twincharger, который сокращает вероятность появления турбоям.

В 1,4-литровом 150-сильном двигателе TSi используется 4 цилиндра и 16 клапанов. Заявленный производителем расход топлива на 100 км пути составляет 5,2 л. Ресурс мотора, согласно техническим данным от фирмы-производителя, достигает 250-300 тыс. км. Как утверждают автовладельцы, он превышает отметку в 300 000 км. Продолжительность эксплуатации без необходимости ремонта определяется уходом и обслуживанием.

Существенных недостатков и сбоев в работе силовой установки не отмечается – она обладает высоким качеством сборки и надежностью. Инженеры Volkswagen учитывали при разработке все недочеты предыдущих версий и рекомендации потребителей.

Теперь в двигателе отсутствует цепь газораспределительного узла, но есть ремень. Перепускной клапан был заменен, а прогрев двигателя улучшен. Отремонтировать отдельные вышедшие из строя узлы можно в домашних условиях, что является приятным моментом для многих автовладельцев.

Проводить плановое техническое обслуживание рекомендуется через 12-15 тыс. пробега. Ремень газораспределительного механизма меняется через 60-75 тыс. км.

Другие работы по восстановлению выполняются с учетом регламента и инструкций от производителя. Капитальный ремонт можно проводить в условиях автосервиса с использованием профессионального оборудования.

Читайте также:  Как почистить коллекторный двигатель

Тюнинг двигателя проводится редко. Но если реализовать прошивку ЭБУ до уровня Stage 1, это позволит увеличить запас мощности до 180 «лошадок». При использовании прошивки Stage 3+ мотор сможет генерировать до 230 л.с. мощности.

150-сильный 1.4 TSi – это проверенный и надежный мотор, который хорошо справляется со своими задачами и заслуживает звания одного из самых экономичных бензиновых агрегатов на рынке. За счет простой конструкции, легкого ремонта и большого срока службы модель получила большую популярность среди зарубежных и отечественных автомобилистов.

2. Hyundai G4LA и G4LC

Бензиновые агрегаты G4LA и G4LC объемом 1,25 и 1,4 литра из серии Каппа выпускаются автоконцерном Hyundai для среднеразмерных и миниатюрных представителей модельного ряда. Они нашли отклик среди потребителей из европейских стран и России. На отечественном пространстве эти двигатели устанавливаются только на моделях Solaris, Rio, Picanto.

Выпуск G4LA имеет объем 1248 куб. см. За счет наличия автоматических гидрокомпенсаторов проводить регулировку клапанов не приходится. В качестве привода ГРМ используется металлическая цепь, а в качестве фазорегулятора – конструкция типа Dual CVVt. Расход топлива 1,2-литрового двигателя составляет 5,8 литров на 100 км в городском цикле, и 3,7 литра – при эксплуатации по шоссе.

Серия Каппа стала логическим продолжением для линейки Гамма, но с улучшенными техническими характеристиками и несколькими интересными обновлениями.

Список основных особенностей двигателей выглядит следующим образом:

  1. Заявленный производителем запас мощности для G4LC составляет 99,7 л.с., но с помощью чип-тюнинга можно увеличить фактических показатель до 109 «лошадок». Даже представители официальных дилерских центров предлагают такую возможность в качестве опции. Поэтому владелец авто сможет без особых усилий поднять тягу.
  2. Силовые установки G4LA и G4LC производятся на южнокорейских заводах, что является гарантией их высокого качества и надежности.
  3. Интенсивность сжатия составляет 10,5 к 1. Это улучшает эффективность отдачи мощности, т.к. точка детонации образуется в верхних пределах ДВС.
  4. ЦПГ – размещение в ряд, поршни обладают небольшим весом и поддерживают охлаждение. Шатуны тонкие, но удлиненные.
  5. Коленчатый вал выглядит практически так же, как у двигателей Гамма, но шейки стали уже за счет уменьшения их веса.
  6. ГРМ состоит из 16 клапанов, гидрокомпенсаторов и двух фазовращателей на валах.

3. 1,6 TU5JP4


Двигатель серии TU5JP4 был выпущен еще в конце 1999 года. В течение десяти лет он использовался в качестве основного агрегата для популярных автомобилей Peugeot и Citroen.

Агрегат выделяется простой конструкцией с консервативной конфигурацией. В нем отсутствуют фазовращатели, но есть 16 клапанов (раньше выпускались 8-клапанные варианты).

Особые «примочки» у мотора не предусмотрены. Коллектор подачи топлива выглядит обычно, дроссель электронный, а регулировка нагрузок на двигатель измеряется с помощью датчика абсолютного давления, который комбинируется с температурным датчиком.

По заявлениям автоэкспертов, TU5JP4 способен преодолеть до 500 000 км пути без особых поломок и проблем. Вероятность возникновения сбоев возрастает при попытках сэкономить на обслуживании.

На примере Peugeot 307 2007 модельного года с механической коробкой передач, TU5JP4 1.6 имеет расход бензина 5,8 литра на 100 езды по трассе, и около 7,4 литра – в смешанных условиях эксплуатации.

4. Honda R20A


2-литровый бензиновый агрегат производства Honda появился на рынке еще в 2006 году. Его использовали в качестве штатного двигателя для моделей Acord, Civic и кроссовера CR-V.

Мотор выполнен из алюминиевого сплава, обладает балансирными валами и впускным коллектором с тремя режимами работы. Кроме того, он имеет головку блока цилиндров с единым распределительным валом и 16-клапанной конфигурацией. Также в модели интегрирована система изменения фаз распределения газа i-VTEC.

Как и предыдущие выпуски японского автоконцерна, этот агрегат не имеет гидрокомпенсаторов, поэтому регулировку клапана нужно проводить после 45 000 км пробега. При этом Honda R20A выделяется качественной сборкой и простой конструкцией, которая упрощает его ремонт и обслуживание.

Для настройки клапанов не нужно подбирать и заменять толкатели. Также водители не жалуются на возможную протечку антифриза или масла. При разработке Honda R20A инженеры делали упор на экономичность и соответствие экологическим стандартам. Запас мощности достигает 155 л.с., а рабочий ресурс – 300 тыс. км.

Обслуживание двигателя сопровождается некоторыми затратами, а капитальный ремонт может стоить приблизительно так же, как и покупка нового агрегата.

5. Renault K7M


На пятой позиции в списке экономичных и надежных бензиновых двигателей находится модель Renault K7M. Она использовалась в качестве начальной силовой установки на малолитражных автомобилях Sandero и Logan. Также двигатель используется в бюджетном кроссовере SUV Duster с обозначением K7M.

За счет относительно небольшого объема (1,6 литра) и 8-клапанной конфигурации, мотор не демонстрирует особую динамичность или форсировку. Запас мощности варьируется от 82 до 87 л.с., а заявленный производителем рабочий ресурс достигает 400 000 км.

К основным преимуществам модели относят наличие чугунного блока цилиндров и специфической конструкции поршней, которая сокращает расход топлива и масла, а также делает устройство стойким к перегревам.

Видео про экономичные автомобили:

Источник

Adblock
detector