Какие фазы менять для изменения направления двигателя

Содержание
  1. Как сделать реверс асинхронного двигателя через кнопку ПНВ?
  2. Для чего нужен реверс двигателя?
  3. Принцип реверсивного движения
  4. Как реализовать схему реверса?
  5. Изменение оборотов асинхронного двигателя. Разбор способов регулирования.
  6. Регулирование частотой
  7. Регулирование оборотов изменением числа пар полюсов
  8. Асинхронные двигатели с фазным ротором
  9. Регулирование с помощью напряжения
  10. Установка активного сопротивления в цепи ротора
  11. Моторы с двойным питанием через вентильные устройства
  12. Эпилог
  13. Как изменить направление вращения однофазного асинхронного двигателя
  14. Изменение вращения однофазного двигателя с конденсатором
  15. Постановка задачи
  16. Вариант 1: подключить рабочий барабан
  17. Постановка задачи
  18. Реверсирование электродвигателей | Все своими руками
  19. Схемы реверсирования двигателей.
  20. Двигатель Д5-ТР.
  21. Двигатель ЭДГ-1.
  22. Двигатель ЭДГ-2.
  23. Двигатель АВЕ – 071 – 4С.
  24. Двигатель ДАО – ЦУ4.
  25. Двигатель ДАО-А.
  26. Двигатель АОЛБ-22-4 2сер.
  27. Термореле РТ-10.
  28. Термореле РТК-С.
  29. Вариант 1: переподключение рабочей намотки
  30. КАК ИЗМЕНИТЬ НАПРАВЛЕНИЕ ВРАЩЕНИЕ ВАЛА В ОДНОФАЗНОМ ДВИГАТЕЛЕ
  31. Как изменить направление вращения трехфазного асинхронного двигателя ?
  32. Подписка на рассылку
  33. Направление вращения вала электродвигателя
  34. Изменение направления вращения вала в трехфазных электродвигателях
  35. Вариант 2: переподключение пусковой намотки
  36. Устройство и подключение однофазных электродвигателей 220В
  37. Вариант 3: смена пусковой обмотки на рабочую, и наоборот
  38. Обзор моделей
  39. Что такое асинхронный двигатель?
  40. Подготовка оборудования для реверса однофазного двигателя
  41. Принцип работы схемы реверса однофазного двигателя
  42. Плавный пуск асинхронных электродвигателей
  43. Реверс однофазных синхронных машин
  44. С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем
  45. Как состояние подшипников влияет на работу двигателя
  46. Что надо учитывать в конструкции статорных обмоток и как их подготовить
  47. Реверс коллекторных двигателей
  48. Асинхронный или коллекторный: как отличить
  49. Как устроены коллекторные движки
  50. Асинхронные

Как сделать реверс асинхронного двигателя через кнопку ПНВ?

При использовании электродвигателей, реверс движка считается неотъемлемой функцией, которая необходима для 85% схем применяемого электрооборудования. Реверс электродвигателя — это перемена вращения ротора в обратном направлении. Поменять направление движения возможно у любого электродвигателя, как постоянного тока, так и асинхронного, работающего с использованием переменного тока.

Для чего нужен реверс двигателя?

Многие механические действия в бытовых и промышленных устройствах, осуществляются с помощью асинхронного движка. В связи, с чем часто возникает необходимость изменения направления движения, исходя из выполняемых задач. Иногда функция реверса для механизма является постоянной, а иногда — временной.

  1. К первой разновидности относятся все грузоподъемные механизмы краны, электроприводы запорно-регулирующих устройств и исполнительных механизмов, работающих в режиме «открыть/закрыть».
  2. К другой разновидности реверса, относят механизмы, в которых данная функция используется очень редко, обычно в аварийных случаях: конвейеры, эскалаторы, насосные агрегаты.

Функцию реверса в электродвигателе иногда используют для торможения, поскольку при отсоединении его от электросети, ротор, располагая значительной инерционностью, продолжает свою работу. Такой кратковременный пуск реверса вызывает процесс торможения движка. Данный способ еще называют противовключением.

Принцип реверсивного движения

Чтобы изменить направление вращения электродвигателя переменного тока, нужно изменить магнитные поля, вызывающие движение в противоположном направлении. Поскольку в магнитных полях каждый провод подключен к положительному и отрицательному току, замена основного и пускового проводов заставит двигатель вращаться в обратном направлении. Это простой метод переключения проводов действует, поскольку полярность магнитного поля меняется на противоположную.

Как реализовать схему реверса?

Для перемены направленности вращения ротора, нужно поменять местами 2 из 3 фазы его обмотки. Тогда электромагнитное поле статора меняет свою направленность движения, при этом ротор в первоначальный период времени, двигаясь по инерции, станет притормаживаться, пока окончательно не остановится. И только потом он будет крутиться в другом направлении.

Замену полярности электро-пусковой обмотки возможно сделать с управляющим тумблером по схеме. Его можно подобрать с 2 или 3 зафиксированными положениями и 6 выходами. Выбирать такое устройство нужно по токовой нагрузке и разрешенному напряжению.

Пропускать ток на тумблер предпочтительнее от вспомогательной обмотки, которая работает непродолжительно. Перечисленное, даст возможность значительно увеличить рабочий ресурс контактной группы.

Реверс асинхронного двигателя с конденсаторным запуском лучше выполнять по следующей схеме:

  • При тяжелом пуске параллельно к главному конденсатору, используя средний контакт с самовозвратом ПНВ, подсоединяют добавочный конденсатор.
  • В таком примере переключают тумблер реверса только при заторможенном роторе, и никак не при его вращении.
  • Случайная перемена направленности работы мотора под напряжением, сопряжена с огромными скачками тока, что истощает его мото-ресурс. По этой причине посадочное место тумблера реверса на оборудовании нужно подбирать таким образом, чтобы сделать невозможным случайное включение его во время работы. Лучше установить его в каком-то углубленном месте конструкции.

Если электродвигатель не работает должным образом после сборки схемы, потребуется дважды перепроверить, что провода идут к правильным клеммам переключателя. И также удостоверится, что проводка не ослаблена или не повреждена.

Рекомендуется использовать увеличительное стекло, чтобы убедиться, что соединения выполнены правильно и даже самая тонкая нить провода случайно не касается другого проводка или клеммы.

Источник

Изменение оборотов асинхронного двигателя. Разбор способов регулирования.

Благодаря своей простоте исполнения, относительной дешевизне и надежности трехфазные двигатели широко используются в хозяйстве и производстве. Во многих исполнительных механизмах применяют всевозможные типы асинхронных двигателей . Для широкого спектра применения АД, необходимо изменять и регулировать скорость вращения вала двигателя. Регулировка скорости АД производят несколькими способами. Их мы сейчас и рассмотрим.

  1. Механические регулирование. Путем изменения передаточного числа в редукторах.
  2. Электрическое регулирование. Изменением нескольких параметров питающего напряжения.

Рассмотрим электрическое изменение скорости АД, как более точный и распространённый способ регулирования.

Управление электрическими параметрами позволяет производить плавный запуск двигателя, поддерживать заданные параметры скорости или момента асинхронного мотора.

Параметры с помощью которых управляют мотором:

  • Частотой тока питающей сети.
  • Величиной тока в цепях мотора.
  • Напряжением на двигателе.

Самым распространённым асинхронным двигателем является мотор беличье колесо, двигатель с короткозамкнутым ротором. Для управления вращением, в этом типе электрических машин, применяют несколько видов воздействия.

  • Изменение частоты поля статора.
  • Управление величиной скольжения, изменяя напряжение питания.

Регулирование частотой

Специальные устройства, преобразователи частоты (другие названия инвертор, частотник, драйвер), подключаются к электрической машине. Путем выпрямления напряжения питания, преобразователь частоты внутри себя формирует необходимые величины частоты и напряжения, и подает их на электрический двигатель.

Необходимые параметры для управления АД преобразователь рассчитывает самостоятельно, согласно внутренним алгоритмам, запрограммированным производителем устройства.

Преимущества регулирование частотой .

  • Достигается плавное регулирование частоты вращения электромотора.
  • Изменение скорости и направление вращения двигателя.
  • Автоматическое поддержание требуемых параметров.
  • Экономичность системы управления.

Единственный недостаток, с которым можно смирится, это необходимость в приобретении частотника. Цены на такие устройства совсем незаоблачные, и в пределах 150 уе, можно обзавестись преобразователем для 2 кВт двигателя.

Регулирование оборотов изменением числа пар полюсов

Специальные многоскоростные двигатели со сложной обмоткой регулируются путем изменения количества активных полюсов на статоре. Обмотки полюсов разбиты на группы, и чередуются, путем коммутации обмотки подключаются, то параллельно, то последовательно.

Положительные моменты данного способа.

  • Высокий КПД мотора.
  • Жесткие механические выходные параметры.

К недостаткам такого управления, можно отнести высокую стоимость электрической машин, а также значительный вес и габариты такого двигателя. Изменение оборотов происходит ступенькой 1500-3000 об/мин.

Асинхронные двигатели с фазным ротором

Основной способ управления АД с фазным ротором — изменение величины скольжения между статором и ротором.

Регулирование с помощью напряжения

Через специальные автотрансформаторы ЛАТР, путем изменения напряжения на обмотках двигателя, производят регулировку оборотов вала.

Данный способ так же подходит и к АД с короткозамкнутым ротором. Таким способ можно регулировать в пределах от минимума до номинальных параметров двигателя.

Установка активного сопротивления в цепи ротора

Переменное реостатное сопротивление или набор сопротивлений в цепи ротора воздействует на ток и поле ротора. Изменяя таким образом величину скольжения и количество оборотов двигателя.

Чем больше сопротивление, тем меньше ток, тем больше величина скольжения АД и меньше скорость.

Достоинства такого регулирования.

  1. Большой диапазон регулирования оборотами электрической машины.
  2. Мягкая выходная характеристика мотора.

Недостатки такого способа.

  1. Уменьшение КПД двигателя.
  2. Ухудшение рабочих характеристик механизма.

Моторы с двойным питанием через вентильные устройства

Регулировка мощности и оборотов в АД с фазным ротором происходит путем изменения величины скольжения. Управление крупными, специальными машинами происходит путем подачи и регулировкой величины ЭДС, на ротор от отдельного источника напряжения.

Эпилог

При всех своих достоинствах асинхронные машины имеют существенный недостаток, это рывок ротора при подаче напряжения. Такие режимы опасны как для самого двигателя, так и для приводных механизмов. Поскольку во время пуска АД, ток в обмотках двигателя приравнивается к короткому замыканию. А рывок вала разбивает подшипники, шлицы, передаточные устройства. Поэтому пуск АД стараются производить плавным стартом. А именно:

  • Запуск через ЛАТР.
  • Разгон и работа АД, через переключение обмоток двигателя звезда-треугольник.
  • Использование устройств управления, таких как частотный преобразователь.

Источник

Как изменить направление вращения однофазного асинхронного двигателя

Рис. 1 Схема подключения двигателя однофазного асинхронного двигателя с пусковым конденсатором.

Возьмем за основу уже подключенный однофазный асинхронный двигатель, с направлением вращения по часовой стрелке (рис.1).

  • точками A, B условно обозначены начало и конец пусковой обмотки, для наглядности к этим точкам подключены провода коричневого и зеленого цвета соответственно.
  • точками С, В условно обозначены начало и конец рабочей обмотки, для наглядности к этим точкам подключены провода красного и синего цвета соответственно.
  • стрелками указано направление вращения ротора асинхронного двигателя

Задача.

Изменить направление вращения однофазный асинхронный двигатель в другую сторону – против часовой стрелки. Для этого достаточно переподключить одну из обмоток однофазного асинхронного двигателя – либо рабочую либо пусковую.

Вариант №1

Меняем направление вращения однофазного асинхронного двигателя, путем переподключения рабочей обмотки.

Рис.2 При таком подключении рабочей обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.

Вариант №2

Меняем направление вращения однофазного асинхронного двигателя, путем переподключения пусковой обмотки.

Рис.3 При таком подключении пусковой обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.

Важное замечание.

Такой способ изменить направление вращения однофазного асинхронного двигателя возможен только в том случае, если на двигателе имеется отдельные отводы пусковой и рабочей обмотки.

Рис.4 При таком подключении обмоток двигателя, реверс невозможен.

На рис. 4 изображен довольно распространенный вариант однофазного асинхронного двигателя, у которого концы обмоток В и С, зеленый и красный провод соответственно, соединены внутри корпуса. У такого двигателя три вывода, вместо четырех как на рис. 4 коричневый, фиолетовый, синий провод.

UPD 03/09/2014 Наконец то удалось проверить на практике, не очень правильный, но все же используемый метод смены направления вращения асинхронного двигателя. Для однофазного асинхронного двигателя, который имеет только три вывода, возможно заставить ротор вращаться в обратном направлении, достаточно поменять местами рабочую и пусковую обмотку. Принцип такого включения изображен на рис.5

Рис. Нестандартный реверс асинхронного двигателя

Источник

Изменение вращения однофазного двигателя с конденсатором

Прежде чем выбрать схему подключения для однофазного асинхронного двигателя, важно выяснить, нужно ли повернуть назад. Если вам часто нужно поменять на эту работу направление вращения а затем целенаправленно организовать обратное с помощью толкателя. Если вам достаточно одностороннего вращения, тогда подходит наиболее распространенная схема без переключения. Но что, если после подключения к нему вы решите, что вам все еще нужно изменить направление?

Постановка задачи

Представьте, что для асинхронного однофазного двигателя, который уже связан с пусковой мощностью, вращение вала первоначально происходит по часовой стрелке, как показано на рисунке ниже.

Уточняем основные моменты:

  • Точка A указывает начало начальной обмотки, а точка B указывает ее конец. Источник А подключен к кофейному проводу, а зеленый — к терминалу.
  • Точка C указывает на начало обмотки, а точка D указывает на ее конец. Красный провод подключен к выходному контакту, а синий провод к выходному контакту.
  • Направление вращения ротора указано стрелками.

Мы поставили перед собой задачу вращать однофазный двигатель, не открывая его корпус, чтобы позволить ротору вращаться в другом направлении (в этом примере, против часовой стрелки). Это можно решить тремя способами. Давайте внимательнее посмотрим на них.

Вариант 1: подключить рабочий барабан

Так сдача Направление вращения мотора позволяет поменять местами только начало и конец рабочей (неизменной) обмотки, как показано на рисунке. Вы можете подумать, что для этого вам придется открыть корпус, снять обмотку и повернуть ее. Вам это не нужно, потому что для работы с контактами внешне:

  1. Четыре провода должны выходить из корпуса. 2 из них соответствуют началу рабочей и пусковой обмоток, а 2 — их концам. Определите, какая пара относится только к рабочей обмотке.
  2. Вы увидите, что к этой паре подключены две полосы: фаза и ноль. Когда двигатель выключен, поверните метод фазового сдвига от начального контакта обмотки до конца и от нуля до конца. Или наоборот.

В результате мы получаем диаграмму, где точки C и D меняются местами. Теперь ротор асинхронного двигателя будет вращаться в другом направлении.

Постановка задачи

Представим, что у уже подсоединенного с внедрением пускозарядной емкости асинхронного однофазового мотора вначале вращение вала ориентировано по часовой стрелке, как на картинке ниже.

Читайте также:  Какие двигатели ставятся на логана

Уточним принципиальные моменты:

  • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К исходной клемме A подсоединен провод кофейного, а к конечной – зеленоватого цвета.
  • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К исходному контакту подсоединен провод красноватого, а к конечному – голубого цвета.
  • Направление вращения ротора обозначено при помощи стрелок.

Ставим впереди себя задачку – сделать реверс однофазового мотора без вскрытия его корпуса так, чтоб ротор начал крутиться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить 3-мя методами. Разглядим их подробнее.

Реверсирование электродвигателей | Все своими руками

Опубликовал admin | Дата 31 января, 2013

Схемы реверсирования двигателей.

Здравствуйте дорогие читатели. Частенько в любительских самодельных устройствах используются различного рода двигатели. В зависимости от предназначения, двигатели в этих устройствах, согласно конструкторскому замыслу должны вращаться в обе стороны. То есть схемы их включения должны предусматривать реверсирование. Самое простой реверс имеют двигатели постоянного тока с возбуждением от постоянных магнитов. Поменял концы проводов питания местами и все – движок вращается в другую сторону. Поэтому и схемы реверсирования для этих двигателей простые. А как быть с другими двигателями? Вот об этом и поговорим.

Двигатель Д5-ТР.

Двигатель с электромагнитным возбуждением. Двигатель имеет разные варианты исполнения и схем включения, но какие бы они не были, нам нужны всего четыре конца – два от статорной обмотки и два от роторной, т.е. от коллекторных щеток.


Для того, чтобы такие двигатели вращались в другую сторону, необходимо, чтобы полярность питающего напряжения на одной из обмоток оставалась постоянной, а полярность другой менялась на противоположную. Схема включения этого, как и любого другого с электромагнитами, показана на рис.1. Здесь постоянную полярность включения имеет статорная обмотка (обмотка возбуждения), что обеспечивается применением выпрямительного моста, а полярность роторной можно менять. Теперь реверс производится так же переполюсовкой напряжения питания.

Двигатель ЭДГ-1.

Двигатель ЭДГ-2.

Двигатель ЭДГ-1 раньше применялся в ЭПУ – электропроигрывающих устройствах. Двигатели типа ЭДГ-2 применялись в магнитофонных приставках. Эти двигатели рассчитаны на работу в сети переменного тока напряжением 127В. Но поменяв схему включения[1] обмоток и фазосдвигающего конденсатора, их можно питать и от сети напряжением 220В. Схема включения двигателей с реверсированием и его управлением показана на рисунке 2. «Лево», «Право» на схеме поставлены для виду. Все зависит от того, как первоначально подключить концы обмоток. Не понравится сторона, в которую первоначально крутится двигатель – перекиньте концы одной из обмоток.

Двигатель АВЕ – 071 – 4С.

Эти двигатели однофазные, асинхронные применялись в стиральных машинах прошлого века и я думаю, что еще переживут и меня с вами. Десятки лет они исправно вертели активатор, стирая белье и еще послужат нашим Самоделкиным. Двигатель имеет четыре вывода от двух обмоток. Одна пусковая, имеющая активное сопротивление 20 ОМ и рабочая с сопротивлением по постоянному току 50 Ом. Схема включения показана на Рис.3.

Двигатель ДАО – ЦУ4.

Этот двигун применялся, а может и применяется в стиральных машинах для вращения центрифуги. Для реверсирования этого двигателя придется разобрать выводную колодку и разъединить провода. Получим так же 4 конца от обмоток. Схема включения показана на Рис.4.

Двигатель ДАО-А.

Тоже от стиральных машин. Имеет четыре вывода. Схема включения такая же, как и у предыдущих асинхронных.

Двигатель АОЛБ-22-4 2сер.


————————————————————————————————————

Замечательный двигатель – три в одном. Внутри имеет тепловое реле и центробежный механизм отключения пусковой обмотки. Пришлось с ним повозиться, чтобы вам нарисовать схему наиболее понятно. Установка перемычек показана на рис. 5. Схема реверсирования показана на рис. 6.

Термореле РТ-10.

Термореле РТК-С.

В стиральных машинах применяются тепловые (защитные) реле РТ-10 и пускозащитные реле РТК-С, РТК-1, РТК-1-3, РТК-3-О и др. Тепловое реле типа РТ-10 с одним нормально замкнутым контактом служит для защиты от перегрузок электрических установок и однофазных электродвигателей переменного тока с номинальным напряжением до 220 В. Реле изготовляют на номинальные токи Iн тепловых эле¬ментов 1,2; 1,9; 2,5; 3,3 и 4,3 А. При Iн = 1,1 А реле не срабатывает в течение 30 мин; при Iн = 1,35 А реле срабатывает не более чем через 30 мин; при Iн = 2 А реле срабатывает за 18…60 с. Время самовозврата контактов в замкнутое состояние от 30 с до 10 мин. В реле встроен биметаллический термоэлемент с перекидной пружиной, которая обеспечивает мгновенное размыкание и замыкание контактов. Изоляция реле выдерживает испытательное напряжение 2000 В, приложенное в течение 1 мин. Реле устанавливают в вертикальном положении контакта¬ми вверх, питание подводится к верхнему зажиму. Реле предназначены для работы в закрытых помещениях при температуре окружающей среды от 0 до 70°С. Это довольно эффективна защита. Так что не пренебрегайте ею, а то себе будет дороже. Ну что еще, а пока все. Удачи всем. До свидания. К.В.Ю.

[1] Радио 2004г. № 6 стр.42 Бурков В. «Как подключить двигатель на 127В к сети 220В».

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Вариант 1: переподключение рабочей намотки

направление вращения мотора, можно только поменять местами начало и конец рабочей (неизменной включенной) обмотки, как это показано на рисунке. Можно поразмыслить, что для этого придется вскрывать корпус, доставать намотку и крутить ее. Этого делать не надо, так как довольно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из их соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Обусловьте, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединены две полосы: фаза и ноль. При отключенном движке произведите реверс методом перекидывания фазы с исходного контакта намотки на конечный, а нуля – с конечного на исходный. Либо напротив.

В итоге получаем схему, где точки С и D изменяются меж собой местами. Сейчас ротор асинхронного мотора будет крутиться в другую сторону.

КАК ИЗМЕНИТЬ НАПРАВЛЕНИЕ ВРАЩЕНИЕ ВАЛА В ОДНОФАЗНОМ ДВИГАТЕЛЕ

Моторчик взят от бытовой мясорубки. Направление

движения нас не устраивало, пришлось его поменять Всю инфо.

Как изменить направление вращения трехфазного асинхронного двигателя ?

Разберемся, как просто поменять направление вращения

трехфазного
двигателя
на противоположное.

Подписка на рассылку

Чтобы механизмы на производстве или в быту, будь-то дерево или металлообрабатывающие станки, консольный насос, конвейерная лента, кран-балка, заточной станок, электрическая газонокосилка, кормоизмельчитель или другое устройство работали без поломок, необходимо, в первую очередь, чтобы вал электродвигателя вращался в правильную сторону.

Во избежание ошибок и не допуска вращения вала механизма в противоположную сторону согласно пункту 2.5.3 «Правил технической эксплуатации электроустановок потребителей» на корпусе самого механизма и приводном двигателе должны быть нанесены стрелки направления вращения электродвигателя.

Направление вращения вала электродвигателя


Определение направления вращения электродвигателя выполняется со стороны единственного конца вала. В том случае если двигатель имеет два конца вала, то вращение определяют со стороны вала, который имеет больший диаметр. Согласно ГОСТ 26772-85 правому направлению соответствует движение вала по часовой стрелке. У наиболее распространенных трехфазных двигателей с короткозамкнутым ротором вращение вала в правую сторону будет осуществляться, если последовательность фаз, по которым подается напряжение на концы обмоток статора, будет соответствовать алфавитной последовательности их маркировки – U1, V1, W1.

Для однофазных двигателей с короткозамкнутым ротором вращение вала по часовой стрелке будет выполняться при условии, когда фаза будет подаваться на конец рабочей обмотки.

Изменение направления вращения вала в трехфазных электродвигателях

Эксплуатация некоторых механизмов требует левостороннего вращения вала. Зная, как изменить направление вращения электродвигателя, это можно сделать без какой-либо доработки или переделки самого приводного двигателя. Для смены направления движения нужно:

  • обесточить электродвигатель;
  • снять крышку клеммной коробки;
  • переставить жилы силового кабеля в соответствие со схемой изображенной на рис. 3: жилу с изоляцией черного цвета (L3) переподключить на контакт V1 в клеммной коробке, а жилу коричневого цвета (L2) на контакт W1.


Левостороннее вращение

Если эксплуатация двигателя требует постоянного переключения двигателя с правостороннего вращения на левостороннее, его подключение осуществляют по специальной схеме,

Вариант 2: переподключение пусковой намотки

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

  1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
  2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Устройство и подключение однофазных электродвигателей 220В

Однофазные электродвигатели 220В широко используются в разнообразных бытовых и промышленных устройствах: холодильниках, стиральных машинах, насосах, дрелях, заточных и подобных им обрабатывающих станках. Их технические характеристики несколько уступают свойствам трехфазных двигателей. Существует два наиболее распространенных типа однофазных электродвигателей для сети переменного тока промышленной частоты:

Первые более просты по своему устройству, но обладают рядом недостатков, главные из которых — трудности с изменением направления и частоты вращения ротора.

Далее рассмотрены однофазные асинхронные электродвигатели и коллекторные двигатели переменного тока.

Вариант 3: смена пусковой обмотки на рабочую, и наоборот

Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя своими руками. Как это сделать на практике (расчет и сборку), используя стандартные схемы управления или самодельные устройства , попробуем разобраться далее.

  • Двигатели с фазным ротором

Обзор моделей

Одними из наиболее популярных являются электродвигатели серии АИР. Существуют модели, исполненные на лапах 1081, и модели комбинированного исполнения – лапы + фланец 2081.

Электродвигатели в исполнении лапы+фланец обойдутся примерно на 5% дороже, чем аналогичные на лапах.

Как правило, производители предоставляют гарантию от 12 месяцев.

Читать также: Почему степлер гнет скобы буквой м

Для электродвигателей, имеющих высоту вращения 56-80 мм, исполнение станины алюминиевое. Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении.

Модели различаются между собой по мощности, частоте вращения, высоте оси вращения, КПД.

Чем мощнее двигатель, тем выше его стоимость:

  1. Двигатель с мощностью 0.18 кВт можно приобрести за 3 тыс. рублей (электродвигатель АИРЕ 56 B2).
  2. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. рублей (АИРЕ 90 LB2).

Высота оси вращения для моторов с 1 фазой варьируется от 56 мм до 90 мм и напрямую зависит от мощности: чем мощнее двигатель, тем больше высота оси вращения, а значит и цена.

Различные модели имеют разный КПД, обычно от 67% до 75%. Больший КПД соответствует большей стоимости модели.

Следует обратить внимание также на двигатели, выпускаемые итальянской компанией ААСО, основанной в 1982 году:

  1. Так, электромотор ААСО серии 53, рассчитан специально для применения в газовых горелках. Эти моторы также могут быть использованы в установках для мойки, генераторах теплого воздуха, системах централизованного обогрева.
  2. Электромоторы серий 60, 63, 71 разработаны для использования в установках водоснабжения. Также, фирма предлагает универсальные двигатели серий 110 и 110 компакт, которые отличаются разнообразной сферой применения: горелки, вентиляторы, насосы, подъемные устройства и другое оборудование.

Купить моторы производства компании ААСО можно по цене от 4600 рублей.

Что такое асинхронный двигатель?

Асинхронные электродвигатели бывают двух основных типов: с фазным ротором и с короткозамкнутым ротором, отличие которых состоит в разных исполнениях обмотки ротора. Это происходит потому что мы присоединяем 3-х вахный двигатель в одно вазную сеть. Первичная обмотка содержит 120 витков провода диаметром 0,7мм, с отводом от середины, вторичная — две отдельные обмотки по 60 витков тем же проводом. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Известно, что сопротивление холодной нити лампы накаливания в 10 раз меньше сопротивления раскаленной нити.

Читайте также:  Схема понижения оборотов двигателя

Если включить АД в 1ф сеть, вращающий момент будет создаваться только одной обмоткой.

В данном случае обмотки двигателя включают последовательно. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Бирки К1 и Н3 (или Н2) надевают па выводы, находящиеся в общих узелках (завязанных при выполнении первой части работы) с Н1 и К3 соответственно. Для того, чтобы его создать необходимо сдвинуть фазы на обмотках при помощи специальной схемы.

Конденсаторы использовались типа КБГ-МН или другие с рабочим напряжением не менее 400 В.При отключении генератора на конденсаторах оставался электрический заряд, поэтому их надежно ограждали, чтобы избежать поражения электрическим током.

Для подключения мотора по довольно редкой схеме звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Двигатель начинает издавать характерный звук (гудеть). Переключение двигателя с одного напряжения на другое производится подключением обмоток. Не следует перегружать двигатель и работать «сутки напролет».

Если двигатель и после этого гудит, то эту фазу следует также поставить по-прежнему, а повернуть следующую фазу — II.

Недостатки это: пониженный и пульсирующий момент однофазного двигателя; повышенный его нагрев; не все стандартные преобразователи готовы для такой работы, т.к. некоторые производители прямо запрещают использовать свои изделия в таком режиме.

Если использовать диммер в соответствии с его назначением и соблюдать все условия использования, можно добиться хороших результатов по управлению источниками света в помещении и на воздухе.

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

В прошлой статье мы говорили про, знакомились со схемой его подключения к электрической сети напряжением 220 (В), обозначением и маркировкой выводов.

В той же статье я обещал Вам в ближайшее время рассказать о том, как можно организовать его реверс, т.е. управлять направлением вращения двигателя дистанционно, а не с помощью перемычек в клеммной коробке.

В принципе ничего сложного нет. Принцип схемы управления аналогичен, за исключением некоторых деталей. Вообще то раньше мне не приходилось сталкиваться со схемой реверса однофазных двигателей, и данная схема была воплощена мною на практике впервые.

Суть схемы сводится к изменению направления вращения вала однофазного конденсаторного двигателя дистанционно с помощью кнопок (кнопочного поста). Помните, в предыдущей статье мы вручную меняли на клеммнике двигателя положение двух перемычек, чтобы изменить направление рабочей обмотки (U1-U2). Теперь Вам нужно убрать эти перемычки, т.к. их роль в данной схеме будут осуществлять нормально-открытые (н.о.) контакты контакторов.

Подготовка оборудования для реверса однофазного двигателя

Для начала перечислим все электрооборудование, которое нам необходимо приобрести для организации реверса конденсаторного двигателя АИРЕ 80С2:

1. Автоматический выключатель

Применяем двухполюсный 16 (А), с характеристикой «С» от фирмы IEK.

В этом кнопочном посту есть 3 кнопки:

  • кнопка «вперед» (черного цвета)
  • кнопка «назад» (черного цвета)
  • кнопка «стоп» (красного цвета)

Разберем кнопочный пост.

Мы видим, что каждая кнопка имеет 2 контакта:

  • нормально-открытый контакт (1-2), который замыкается в том случае, когда нажмете на кнопку
  • нормально-закрытый контакт (3-4), который замкнут до тех пор, пока не нажать кнопку

Прошу заметить, что на фотографии самая крайняя кнопка слева перевернута. Если будете подключать схему реверса однофазного двигателя самостоятельно, то будьте внимательны, кнопки в кнопочном посту могут быть перевернуты. Ориентируйтесь на маркировку контактов (1-2) и (3-4).

Также необходимо приобрести два контактора. В своем примере я использую малогабаритные контакторы КМИ-11210 от фирмы IEK, которые устанавливаются на DIN-рейку. Эти контакторы имеют 4 нормально-открытых (н.о.) контакта и способны коммутировать нагрузку до 3 (кВт) при переменном напряжении 230 (В). Вот они как раз нам и подходят, т.к. наш испытуемый однофазный двигатель АИРЕ 80С2 имеет мощность 2,2 (кВт).

Вместо контакторов можно приобрести, на примере которых я рассказывал их устройство и принцип действия.

Катушки этого контактора рассчитаны на переменное напряжение 220 (В), что нужно будет учесть при сборке схемы управления реверсом однофазного двигателя.

Вот, собственно говоря, мое произведение.

Я уже говорил в прошлой статье, что один из читателей сайта «Заметки электрика» по имени Владимир, попросил меня помочь ему мощностью 2,2 (кВт) и составить (придумать) для него схему реверса. По моим эскизам (в том числе монтажным) Владимир собрал вышеприведенную схему в. Чуть позже отписался мне в почту, что схему испытал, все работает, претензий нет.

Если у Вас по материалам сайта имеются какие то вопросы, то задавайте мне их в комментариях или на. В течение 12-24 часов, а может и быстрее, все зависит от моей занятости, я отвечу Вам.

А сейчас я расскажу, как эта схема работает.

Принцип работы схемы реверса однофазного двигателя

Первым делом включаем питающий автомат.

При нажатии на кнопку «вперед» катушка контактора К1 получает питание по следующей цепи: фаза — н.з. контакт (3-4) кнопки «стоп» — н.з. контакт (3-4) кнопки «назад» — н.о. контакт (1-2) нажатой кнопки «вперед» — катушка контактора К1 (А1-А2) — ноль.

Контактор К1 подтягивается и замыкает все свои нормально-открытые (н.о.) контакты:

  • 1L1-2T1 (самоподхват катушки К1)
  • 5L3-6T3 (имитирует перемычку U1-W2)
  • 13НО-14НО (имитирует перемычку V1-U2)

Кнопку «вперед» удерживать не нужно, т.к. катушка контактора К1 встает на «самоподхват» через свой же н.о. контакт (1L1-2T1).

Однофазный двигатель начинает вращаться в прямом направлении.

2. Вращение в обратном направлении

При нажатии на кнопку «назад» катушка контактора К2 получает питание по следующей цепи: фаза — н.з. контакт (3-4) кнопки «стоп» — н.з. контакт (3-4) кнопки «вперед» — н.о. контакт (1-2) нажатой кнопки «назад» — катушка контактора К2 (А1-А2) — ноль.

Контактор К2 срабатывает и замыкает следующие свои нормально-открытые (н.о.) контакты:

  • 1L1-2T1 (самоподхват катушки К2)
  • 3L2-4T2 (фаза на двигатель в силовой цепи)
  • 5L3-6T3 (имитирует перемычку W2-U2)
  • 13НО-14НО (имитирует перемычку U1-V1)

Кнопку «назад» удерживать пальцем не требуется, т.к. катушка контактора К2 встает на «самоподхват» через свой же н.о. контакт (1L1-2T1).

Однофазный двигатель начинает вращаться в обратном направлении.

Чтобы остановить двигатель, нужно нажать на кнопку «стоп».

Представленная схема реверса конденсаторного однофазного двигателя имеет блокировку кнопок, т.е. если при включенном двигателе в прямом направлении Вы ошибочно нажмете на кнопку «назад», то вначале отключится контактор К1, а потом уже сработает контактор К2. И наоборот. Таким образом мы имеем блокировку от одновременно двух включенных контакторов К1 и К2.

Можно применить и другие виды блокировок, но я ограничился только этой.

P.S. На этом я завершаю свою статью. Если Вам понравилась моя статья, то буду очень благодарен, если Вы поделитесь ей в социальных сетях. А также не забывайте подписываться на мои новые статьи — дальше будет интереснее.

Независимо от того, каким образом асинхронный подключен к сети, отключите питание устройства, в котором он установлен. При наличии высоковольтных разрядите их перед прикосновения к любым деталям устройства.

Обязательно убедитесь в том, что изменение направления вращения не повлечет за собой выход из строя или ускоренный износ устройства, в состав которого входит электродвигатель.

Если питается от однофазной сети через , вначале обязательно убедитесь в том, что нагрузка на его валу мала, и что при изменении направления вращения она не возрастет. Помните, что возрастание нагрузки при таком способе питания может привести к остановке двигателя с последующим его возгоранием. Затем тот вывод конденсатора, который соединен не с , а с одним из питающих проводов, отключите от него и переключите на другой питающий провод. Если имеется второй, пусковой конденсатор, с ним проделайте то же самое (сохранив включенную последовательно с ним пусковую кнопку).

В случае, если двигатель питается через трехфазный инвертор, никаких переключений не производите. Узнайте из инструкции к прибору, как осуществить реверс (перестановкой джампера, нажатием кнопки, изменением настроек через меню или особой комбинацией клавиш, и т.п.), после чего осуществите описанные там действия.

  • как поменять вращение двигателя

В наше время асинхронные агрегаты используются главным образом в режиме двигателя. Устройства, имеющие мощность более 0.5 кВт обычно изготавливают трёхфазными, меньшей мощности – однофазными. За свое долгое существование асинхронные двигатели нашли широкое применение в разных отраслях промышленности и сельского хозяйства. Их используют в электроприводе подъёмно-транспортных машин, металлорежущих станков, транспортёров, вентиляторов и насосов. Менее мощные двигатели применяют в устройствах автоматики.

Возьмите трехфазный асинхронный . Снимите клеммную коробку. Для этого выкрутите отверткой два винта, которыми она крепится к корпусу. Концы обмоток двигателя обычно выведены на 3-х или 6-и клеммную колодку. В первом случае это означает, что фазные статорные обмотки соединены «треугольником» или «звездой». Во втором — не подключены между собой. В этом случае на первый план выходит их правильное соединение. Включение «звездой» предусматривает объединение одноименных выводов обмоток (конец или начало) в нулевую точку. При подключении «треугольником» следует соединить конец первой обмотки с началом второй, затем конец второй — с началом третьей, а затем конец третьей — с началом первой.

Возьмите омметр. Его используйте в том случае, когда выводы обмоток асинхронного электродвигателя не маркированы. Определите прибором три обмотки, обозначьте их условно I, II и III. Соедините две любые из них последовательно, чтобы найти начало и конец каждой из обмоток. Подайте на них переменное напряжение величиной 6 — 36 В. К двум концам третьей обмотки подключите вольтметр переменного тока. Возникновение переменного напряжения говорит о том, что обмотки I и II были подключены согласно, если его нет, то встречно. В этом случае поменяйте местами выводы одной из обмоток. Затем отметьте начало и конец I и II обмоток. Для определения начало и конца третьей обмотки, поменяйте местами концы обмоток, допустим, II и III, и по вышеописанной методике повторите измерения.

Подключите к трехфазному асинхронному двигателю, который включен в однофазную сеть, фазосдвигающий конденсатор. Определить его требуемую емкость (в мкФ) можно по формуле С = k*Iф/U, где U — напряжение однофазной сети, В, k — коэффициент, который зависит от соединения обмоток, Iф — номинальный фазный ток электродвигателя, A. Учитывайте, что когда обмотки асинхронного электродвигателя соединены «треугольником», то k = 4800, «звездой» — k = 2800. Примените бумажные конденсаторы МБГЧ, К42-19, которые должны быть рассчитаны на напряжение не меньше, чем напряжение питающей сети. Помните, что даже при правильно рассчитанной емкости конденсатора, асинхронный электродвигатель

разовьет мощность не более 50-60 % от номинала.

  • Подключение трехфазного асинхронного двигателя к однофазной сети

Асинхронная машина представляет собой устройство, работающее на электричестве с переменным током, причем частота вращения машины не равна частоте вращения магнитного поля, которое создается в результате тока обмотки статора. Так какие существуют типы подобных устройств и по какому принципу они работают?

В некоторых странах к подобным устройствам также относят коллекторные машины и называют асинхронные еще и индукционными, что объясняется процессом, в ходе которого ток в обмотке ротора индуцируется полем статора. Современный мир нашел применение асинхронным машинам в качестве электродвигателей, являющихся преобразователями энергии электричества в механическую силу.

Большая востребованность подобных устройств объясняется двумя их достоинствами – легкое и достаточно простое изготовление и отсутствие контакта электричества в роторе с неподвижной частью машины. Но есть у асинхронных машин и свои недостатки – это сравнительно малый пусковой момент и значительный пусковой ток.

История создания устройств асинхронного типа идет еще от англичанина Галилео Феррариса и Николы Теслы. Первый в 1888 году опубликовал собственные исследования, в которых были изложены теоретические основы подобного двигателя. Но Феррарес ошибался, считая, что асинхронная машина обладает небольшим КПД. В том же году статью Галилео Феррариса прочитал россиянин Михаил Осипович Доливо-Добровольский, который уже в 1889-ом получил патент на трехфазный асинхронный двигатель, устроенный по типу короткозамкнутого ротора «беличье колесо». Именно эта троица и является первооткрывателем эры массового применения машин на электричестве в промышленности, а сейчас асинхронные устройства представляют собой самые распространенные двигатели.

Принцип действия асинхронных устройств состоит в подаче переменного напряжения по обмоткам с током и с дальнейшим созданием вращающегося магнитного поля. Последнее, в свою очередь, оказывает воздействие на обмотку ротора, согласуясь с законом электромеханической индукции, и вступает во взаимодействие с полем статора, которое вращается. Результатом этих действий является воздействие на каждый зубец ротора силы, складывающейся исключительно по окружности и создающей вращающийся электромагнитный момент. Именно данные процессы и заставляют ротор вращаться.

Современные и применяемые асинхронные двигатели разделяются по способам управления на следующие типы – реостатные, частотные, с переключением обмоток по схеме «звезда», импульсные, с изменением числа пар полюсов, с изменением амплитуды питающего напряжения, фазовые, амплитудно-фазовые, с включением в цепь подпитки статора реактора, а также с сопротивлением индуктивного типа.

Читайте также:  Какое масло заливать в двигатель ф16д3

Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.

Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.

Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6. Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей. Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.

На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:

  • один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
  • С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
  • С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.

Подробнее о схемах подключения магнитных пускателей для трехфазных электродвигателей читайте .

Плавный пуск асинхронных электродвигателей

АД кроме безусловных преимуществ, обладают существенными недостатками. Это рывок на старте и большие пусковые токи, в 7 раз превышающие номинальные. Для мягкого старта электродвигателя используются следующие методы:

  • переключение обмоток по схеме звезда – треугольник;
  • включение электродвигателя через автотрансформатор;
  • использование специализированных устройств для плавного пуска.

В большинстве частотных регуляторов есть функция плавного пуска двигателя. Это не только снижает пусковые токи, но и уменьшает нагрузки на исполнительные механизмы. Поэтому регулирование частоты и плавный пуск довольно сильно связаны между собой.

Реверс однофазных синхронных машин

Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.

Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.

В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:

  • Сетевое напряжение подается на клеммы W2 и V1.
  • Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
  • Концы второй обмотки подключают к клеммам W2 и V2.
  • Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
  • Клемма W1 остается свободной.

Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
  • три жилы при внутренней сборке схемы треугольника;
  • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
  • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
  • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Реверс коллекторных двигателей

Схема включения его обмоток аналогична той, что используется в двигателях постоянного тока с последовательным возбуждением. Одна токоснимающая щетка коллектора подключается к обмотке статора, а питающее напряжение подается на другую щетку и второй вывод статорной обмотки.

При изменении положения штепсельной вилки в розетке происходит одновременная переполюсовка магнитов ротора и статора. Поэтому направление вращения не изменяется. Так же, как это происходит в двигателе постоянного тока при одновременном изменении полярности питающего напряжения на обмотке возбуждения и якоря. Изменить порядок следования фаза – ноль надо только в одном элементе электрической машины – коллекторе, который обеспечивает не только пространственное, но электрическое разделение проводников – обмотки якоря изолированы друг от друга. На практике это выполняется двумя способами:

  1. Физической переменой места установки щеток. Это нерационально, поскольку связано с необходимостью внесения изменений в конструкцию устройства. Кроме того, приводит к преждевременному выходу щеток из строя, поскольку форма выработки на их рабочем конце не совпадает с формой поверхности коллектора.
  2. Изменением положения перемычки между щеточным узлом и обмоткой возбуждения в клеммной коробке, а также точки подключения сетевого провода. Можно реализовать с помощью одного многопозиционного выключателя или двух магнитных пускателей.

Не забудьте, что все работы по перестановке перемычек в клеммной коробке или подключению схемы реверсирования должны проводиться при полностью снятом напряжении.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Источник

Adblock
detector