Какие двигатели используются в метро

Сколько вольт в трамвае? А в метро? Чтобы больше не спрашивали.

Я решил в одном посте собрать все данные о величинах напряжения в контактных сетях самого распространенного электротранспорта. Ведь, рано или поздно, этот вопрос возникает в голове любого человека.

Железнодорожный транспорт

Электровоз и электропоезд

Для питания электровозов и электропоездов (электричек) в РФ используется однопроводная воздушная контактная сеть (КС) двух родов тока: постоянного и переменного .

В системах постоянного тока применяется напряжение 3 кВ . Постоянный ток, относительно, низкого напряжения, в сравнении с переменным, гораздо менее выгодно передавать на значительные расстояния из-за больших потерь, которые необходимо компенсировать увеличением сечения контактного провода, а так же установкой большего количества тяговых подстанций, на меньшем расстоянии (20-25 км) друг от друга. Электрификация железных дорог на постоянном токе осуществлялась с 1913 года, а первый электровоз на переменном токе был построен только в 1938 г., поэтому, изначально, наибольшее развитие в стране получил постоянный ток.

В системах переменного тока используется напряжение 25 кВ с частотой 50 Гц. Использование переменного тока высокого напряжения наиболее экономично, т. к. его можно передавать на большие расстояния, поэтому тяговые подстанции устанавливают уже на расстоянии 40-60 км друг от друга. Минус переменного высокого напряжения в том, что оно наводит ток в близлежащих металлических конструкциях, а так же в цепях автоматики, поэтому необходимо применять защитные меры. Тяговая подстанция выдаёт 27.5 кВ, но из-за высокого индуктивного сопротивления между контактным проводом и рельсом, электровозы рассчитаны на напряжение 25 кВ.

Источник

Вагоны метрополитена 81-760/761 Электрическое оборудование

Название Вагоны метрополитена 81-760/761 Электрическое оборудование
страница 5/33
Размер 0.54 Mb.
Тип Документы

Тяговые двигатели

Тяговые двигатели асинхронные, трехфазные, четырехполюсные с короткозамкнутым ротором.

Электродвигатели относятся к классу самовентилируемых. Движение воздуха обеспечивают лопатки на короткозамыкающих кольцах обмотки ротора. Для прохождения охлаждающего воздуха через двигатель в станине и подшипниковых щитах, предусмотрены окна, защищенные металлической сеткой.

Асинхронная электрическая машина характеризуется тем, что при ее работе возбуждается вращающееся магнитное поле, которое вращается асинхронно относительно скорости вращения ротора. Тяговые двигатели, установлены на вагонах 81-760/761 с опорой только на раму тележки, что снижает ударные нагрузки на двигатель при прохождении неровностей и стыков ходовых рельсов.

Двигатели могут работать как электродвигателями, так и генераторами. В первом случае электрическая энергия, потребляемая от контактной сети (3-ий рельс), преобразуется в механическую развивая, при этом вращающий момент на валу двигателя.

Во втором случае, двигатель преобразует приведенную к валу механическую энергию от вращения колесных пар в электрическую, которая может быть вновь возвращена в контактную сеть (рекуперативное торможение). При отсутствии рекуперации энергия гасится на тормозном реостате (сопротивлении).

^ Основные технические данные двигателя.

Мощность часового режима – 170 кВт, частота вращения часового режима – 1290 об/мин, номинальное напряжения питания – 530в, номинальная частота – 43 Гц, максимальная частота вращения – 3600об/ мин, масса – 805 кг.

^ Устройство тягового двигателя

Рис.25 Тяговый двигатель

Тяговый двигатель (Рис.25) состоит из: статора, ротора, двух подшипниковых щитов, вентилятора.

Статор 5 (неподвижная часть) – предназначен для укладки в него двухслойной обмотки. Имеет форму полого цилиндра, собранного из пластин электротехнической стали, толщиной 0,5мм, изолированных друг от друга слоем лака, что обеспечивает уменьшение потерь от вихревых токов. Фазные обмотки, которые возбуждают вращающее магнитное поле, размещаются в пазах на внутренней стороне сердечника статора. Обмотка статора подсоединяется к 3-х фазному источнику переменного тока – инвертору.

Ротор 4 (вращающаяся часть) – короткозамкнутый. Собирается также из штампованных пластин электротехнической стали, определенной конфигурации, в результате чего на внешней стороне сердечника ротора образуются пазы. В пазы ротора вставляют обмотку, которая изготовляется в виде цилиндрической (беличьей) клетки из алюминиевых стержней. Стержни вставляются без изоляции. Концы стержней замыкают накоротко кольцами, которые изготавливают из того же материала. Обмотка ротора не соединяется с сетью и с обмоткой статора. Ротор насажен на вал тягового двигателя.

Вал тягового двигателя изготавливается из высоколегированной стали и имеет несколько шеек различной длины и диаметров для посадки на них подшипниковых щитов, сердечника ротора и зубчатого колеса 13 для импульсного датчика частоты вращения (ДЧВ).

Подшипниковые щиты» 2,9 устанавливаются в статор с двух сторон. Подшипники 3,11 щитов опираются на вал тягового двигателя. Корпус тягового двигателя имеет зажим заземления, через который двигатель заземляется.

^ Получение вращающего момента в тяговом двигателе

При подключении обмотки статора к источнику питания, в обмотке создается вращающееся магнитное поле, силовые линии которого пересекают неподвижные витки обмотки ротора, в результате чего в обмотке ротора появляется ЭДС и ток. Возбуждается вращающее магнитное поле ,которое вращается асинхронно относительно скорости вращения ротора.

Магнитное поле ротора, взаимодействуя с магнитным полем статора, создают вращающий момент, стремящийся повернуть ротор в сторону вращения вращающегося магнитного поля. Ротор начинает вращаться.

^ Подвеска тягового двигателя на тележке

Рис.26 Крепление тягового привода

Крепление каждого тягового двигателя осуществляется в четырех точках. Тяговый электродвигатель с одной стороны подвешен к центральной балке рамы тележки на двух кронштейнах 1 ( Рис26). Крепление выполнено с использованием резинометаллических шарниров, а с другой стороны крепится к концевой балке рамы тележки с помощью регулировочных тяг 2, которыми регулируется соосность валов двигателя и редуктора. Крепление тяг выполнено с помощью шарнирного соединения. Использование резинометаллических шарниров позволяет уменьшить шум и вибрации конструкции.

Читайте также:  Чем почистить двигатель пылесоса

Вал тягового двигателя соединен с валом редуктора с помощью эластичная муфты. Через корпус редуктора, электродвигателя и концевую балку пропущен пре­дохранительный трос.

Рис.27 Кронштейны к центр. балке Рис.28 Регулировочная тяга, предохр.трос

^ Передача вращающегося момента тягового двигателя на колесную пару

В состав привода тягового входят тяговый электродвигатель, редуктор, пере­даточный механизм, зубчатая муфта и другие элементы, обеспечивающие передачу вращающего момента от электродвигателя на колесную пару. На тележке установлено два тяго­вых привода.

Передача крутящего момента в тяговом приводе осуществляется по схеме: тяговый электродвигатель — зубчатая полумуфта ведущая — зубчатый венец — зубчатая полумуфта ведомая муфты мембранной эластичной — вал-шестерня редуктора — шестерня — выходной вал — пере­даточный механизм — ось колесной пары.

Датчик частоты вращения ротора двигателя (ДЧВ)

Датчик предназначен для измерения числа оборотов вала якоря тягового двигателя.

Измерительная головка установлена рядом с зубчатым колесом на не приводном конце вала двигателя. Чувствительный измерительный элемент головки определяет момент прохождения зубца рядом с ним. Каждый раз, когда зубец колеса проходит перед элементом, выход датчика меняет состояние. Таким образом, на выходе датчика образуется последовательность электрических импульсов, частота следования которых пропорциональна частоте вращения вала двигателя.

Датчик частоты вращения ротора двигателя устанавли­вается на каждом тяговом двигателе. Сигналы ДЧВ о частоте вращения двигателей используются в блоке управления тяговым приводом (БУТП-2) для управления силовым инвертором и защиты привода от буксования и юза.

Рис.29 Установка датчика частоты вращения

Датчик состоит из измерительной головки в стальной оболочке (1), проводника (2) и разьема соединителя. Стальная оболочка с фланцем крепления позволяет устанавливать датчик в специальный корпус на тяговом двигателе.

Источник

Тяговый электродвигатель

Тяговый электродвигатель — электрическая машина, преобразующая электрическую энергию в механическую для привода в движение колёсных пар вагонов. Тяговые двигатели используют также для торможения поезда, переводя их в генераторный режим. При этом механическая энергия движущегося поезда преобразуется в электрическую.

Содержание

Общие сведения

Развитие конструкции тяговых двигателей тесно связано с совершенствованием конструкции систем управления ими. Исторически подвижной состав всех видов электрического транспорта строился с коллекторными тяговыми двигателями. Это объясняется, в первую очередь, простотой простотой передачи энергии и управления режимами его работы. Такие двигатели обладают удобными для использования на транспорте механическими характеристиками. Однако, коллекторные двигатели имеют и ряд недостатков, связанных, в основном, с наличием коллектора. Коллектор, имеющий подвижные контакты (щетки), требует регулярного обслуживания. Для обеспечения надежной коммутации, снижения искрения усложняется конструкция электродвигателя. Кроме того, это ограничивает максимальную скорость вращения, что приводит к увеличению габаритов двигателя.

Развитие силовой полупроводниковой техники, обладающей высоким быстродействием, позволило в 1960-х — 80-х годах сначала отказаться от реостатной системы управления коллекторными тяговыми двигателями, заменив её более надежной и экономичной импульсной, а затем и перейти к выпуску вагонов с асинхронным тяговым приводом. На отечественных метрополитенах первым серийно выпускавшимся типом вагонов с импульсным регулированием стал тип 81-718/719 в 1991 году, а первым серийно выпускаемым типом вагонов с асинхронными двигателями — «Яуза» 81-720.1/721.1 в 1998 году.

Основными недостатками асинхронных двигателей являются сложность регулирования и сложность осуществления электрического торможения при использовании двигателей с короткозамкнутым ротором. Поэтому в настоящее время разрабатываются конструкции тяговых приводов, использующих синхронные двигатели с ротором на постоянных магнитах, вентильно-индукторные двигатели.

Коллекторные тяговые двигатели

В России существует единая унифицированная серия коллекторных тяговых двигателей постоянного тока, в которую вошли и двигатели электропоездов метрополитена. Все они имеют общий принцип компоновки и много унифицированных узлов и деталей. При изготовлении унифицированных тяговых двигателей можно использовать однотипное станочное оборудование, что снижает их стоимость. На вагонах метрополитена широко используют тяговые двигатели постоянного тока. Такие двигатели обладают хорошими тяговыми характеристиками, сравнительно просты по конструкции и надежны в эксплуатации. По конструкции тяговые двигатели электроподвижного состава существенно отличаются от стационарных двигателей постоянного тока, что объясняется особенностями их расположения и условиями работы. Размеры тягового двигателя, подвешенного под кузовом вагона, ограничены подвагонными габаритами. Диаметр его определяется диаметром колеса, так как должно быть выдержано определенное расстояние от нижней точки двигателя до уровня головки рельсов. Длина тягового двигателя ограничена габаритными размерами тележки. На вагонах установлены четыре тяговых двигателя: по одному на каждую колесную пару. Нумерация их идет по осям, считая от кабины управления. Тяговый двигатель работает в тяжелых условиях, так как на него попадают грязь с железнодорожного полотна, пыль от тормозных колодок, дождь и снег на открытых участках трассы. Поэтому все детали, расположенные в его корпусе, должны быть защищены. Для лучшего отвода тепла, выделяющегося при работе тягового двигателя, на валу якоря установлен вентилятор, засасывающий воздух со стороны коллектора и прогоняющий его через двигатель. В паспорте стационарных электрических машин обычно указывает их номинальную мощность продолжительного режима, то есть такую мощность, которую машина должна отдавать неограниченно долгое время, причем температура его узлов и деталей не должна превышать значений, допускаемых нормами для изоляционных материалов. Режим работы тяговых двигателей резко меняется в зависимости от профиля пути и веса поезда. Это не позволяет характеризовать работоспособность тягового двигателя только значением номинальной мощности продолжительного режима. Поэтому характеристики тяговых двигателей даны для часового и максимального режимов.

Читайте также:  Чрезмерное давление масла при прогретом двигателе ваз

Асинхронные тяговые двигатели

Тяговые двигатели ДАТЭ-170 входят в комплект тягового привода КАТП-1, устанавливаемого на вагонах 81-720.1/721.1 и 81-740/741. Их основные параметры:

  • Номинальная мощность — 170 кВт
  • Минимальное напряжение — 530 В
  • Номинальная частота тока статора — 43 Гц
  • Номинальная частота вращения — 1290 об/мин
  • Максимальная частота вращения — 3600 об/мин
  • Масса — 805 кг

Кроме того, в эксплуатации на метрополитенах Казани, Киева, Праги находятся вагоны отечественного производства с асинхронным приводом производства фирмы «Шкода».

Конструкция тяговых двигателей

Устройство тягового двигателя постоянного тока

Все тяговые двигатели постоянного тока вагонов метрополитена имеют в основном одинаковое устройство. Двигатель состоит из остова, четырех главных и четырех добавочных полюсов, якоря, подшипниковых щитов, щеточного аппарата, вентилятора.

Остов двигателя

Он выполнен из электромагнитной стали имеет цилиндрическую форму и служит магнитопроводом. Для жесткого крепления к поперечной балке рамы тележки на остов предусмотрены три прилива-кронштейна и два предохранительных ребра. В остове имеются отверстия для крепления главных и добавочных полюсов, вентиляционные и коллекторные люки. Из остова двигателя выходят шесть кабелей. Торцовые части остова закрыты подшипниковыми щитами. В остове укреплена паспортная табличка с указанием завода-изготовителя, заводского номера, массы, тока, частоты вращения, мощности и напряжения.

Главные полюсы

Они предназначены для создания основного магнитного потока. Главный полюс состоит из сердечника и катушки. Катушки всех главных полюсов соединены последовательно и составляют обмотку возбуждения. Сердечник набран из листов электротехнической стали толщиной 1,5 мм для Уменьшения вихревых токов. Перед сборкой листы прокрашивают изоляционным лаком, сжимают прессом и скрепляют заклепками. Часть сердечника, обращенная к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока в воздушном зазоре. В тяговых двигателях ДК-108А, установленных на вагонах Е (по сравнению с ДК-104 на вагонах Д), увеличен зазор между якорем и главными полюсами, что, с одной стороны, дало возможность увеличить скорость в ходовых режимах на 26 %, а с другой стороны, уменьшилась эффективность электрического торможения (медленное возбуждение двигателей в генераторном режиме из-за недостаточного магнитного потока). Для увеличения эффективности электрического торможения в катушках главных полюсов кроме двух основных обмоток, создающих основной магнитный поток в тяговом и тормозном режимах, имеется третья — подмагничивающая, которая создает дополнительный магнитный поток при работе двигателя только в генераторном режиме. Подмагничивающая обмотка включена параллельно двум основным и получает питание от высоковольтной цепи через автоматический выключатель, предохранитель и контактор. Изоляция катушек главных полюсов кремнийорганическая. Главный полюс крепится к остову двумя болтами, которые ввертывают в квадратный стержень, расположенный в теле сердечника.

Добавочные полюсы

Они предназначены для создания дополнительного магнитного потока, который улучшает коммутацию и уменьшает реакцию якоря в зоне между главными полюсами. По размерам они меньше главных полюсов и расположены между ними. Добавочный полюс состоит из сердечника и катушки. Сердечник выполнен монолитным, так как вихревые токи в его наконечнике не возникают из-за небольшой индукции под добавочным полюсом. Крепится сердечник к остову двумя болтами. Между остовом и сердечником для меньшего рассеяния магнитного потока установлена диамагнитная латунная прокладка. Катушки добавочных полюсов соединены последовательно одна с другой и с обмоткой якоря.

Якорь

Машина постоянного тока имеет якорь, состоящий из сердечника, обмотки, коллектора и вала. Сердечник якоря представляет собой цилиндр, набранный из штампованных листов электротехнической стали толщиной 0,5 мм. Для уменьшения потерь от вихревых токов, возникающих при пересечении якорем магнитного поля, листы изолируют один от другого лаком. В каждом листе имеется отверстие со шпоночной канавкой для насадки на вал, вентиляционные отверстия и пазы для укладки обмотки якоря. В верхней части пазы имеют форму ласточкиного хвоста. Листы насаживают на вал и фиксируют шпонкой. Собранные листы прессуются между двумя нажимными шайбами. Обмотка якоря состоит из секций, которые укладывают в пазы сердечника и пропитывают асфальтовым и бакелитовым лаками. Чтобы обмотка не выпадала из пазов, в пазовую часть забивают текстолитовые клинья, а переднюю и заднюю части обмотки укрепляют проволочными бандажами, которые после намотки пропаивают оловом. Назначение коллектора машины постоянного тока в различных режимах работы неодинаково. Так, в генераторном режиме коллектор служит для преобразования переменной электродвижущей силы (э.д.с), индуцируемой в обмотке якоря, в постоянную э.д.с. на щетках генератора, в двигательном — для изменения направления тока в проводниках обмотки якоря, чтобы якорь двигателя вращался в какую-либо определенную сторону. Коллектор состоит из втулки, коллекторных медных пластин, нажимного конуса. Коллекторные пластины изолированы друг от друга миканитовыми пластинами, от втулки и нажимного конуса — изоляционными манжетами. Рабочую часть коллектора, имеющую контакт со щетками, протачивают на станке и шлифуют. Чтобы при работе щетки не касались миканитовых пластин, коллектор подвергают «продорожке». При этом миканитовые пластины становятся ниже коллекторных примерно на 1 мм. Со стороны сердечника в коллекторных пластинах предусмотрены выступы с прорезью для впаивания проводников обмотки якоря. Коллекторные пластины имеют клинообразное сечение, а для удобства крепления — форму «ласточкин хвост». Коллектор насаживают на вал якоря прессовой посадкой и фиксируют шпонкой. Вал якоря имеет разные посадочные диаметры. Кроме якоря и коллектора, на вал напрессована стальная втулка вентилятора. Внутренние кольца подшипников и подшипниковые втулки насажены на вал в горячем состоянии.

Подшипниковые щиты

В щитах установлены шариковые или роликовые подшипники — надежные и не требующие большого ухода. Со стороны коллектора стоит упорный подшипник; его наружное кольцо упирается в прилив подшипникового щита. Со стороны тяговой передачи установлен свободный подшипник, который позволяет валу якоря удлиняться при нагреве. Для подшипников применяют густую консистентную смазку. Чтобы смазка при работе двигателей не выбрасывалась из смазочных камер, предусмотрено гидравлическое (лабиринтное) уплотнение. Вязкая смазка, попав в небольшой зазор между канавками-лабич рингами, проточенными в щите, и втулкой, насаженной на вал, под действием центробежной силы отбрасывается к стенкам лабиринта, где самой смазкой создаются гидравлические перегородки. Подшипниковые щиты крепят к обеим сторонам остова.

Читайте также:  Сколько двигателей у боинга 787

Щеточный аппарат

Для соединения коллектора двигателя с силовой цепью вагона используют электрографитные щетки марки ЭГ-2А, которые обладают хорошими коммутирующими свойствами, высокой механической прочностью и способны выдерживать большие перегрузки. Щетки представляют собой прямоугольные призмы размером 16 х 32 х 40 мм. Рабочую поверхность щеток пришлифовывают к коллектору для обеспечения надежного контакта. Щетки устанавливают в обоймы, называемые щеткодержателями, и соединяют с ними гибкими медными шунтами: в каждом щеткодержателе по две щетки, число щеткодержателей — четыре. Нажим на щетку осуществляется пружиной, упирающейся одним концом через палец в щетку, другим — в щеткодержатель. Нажатие на щетку должно быть отрегулировано в строго определенных пределах, так как чрезмерный нажим вызывает быстрый износ щетки и нагрев коллектора, а недостаточный не обеспечивает надежного контакта между щеткой и коллектором, вследствие чего возникает искрение под щеткой. Нажатие не должно превышать 25Н (2,5 кгс) и быть менее 15Н (1,5 кгс). Щеткодержатель укрепляют на кронштейне и с помощью двух шпилек, запрессованных в кронштейн, крепят непосредственно к подшипниковому щиту. Кронштейн от щеткодержателя и подшипникового шита изолируют фарфоровыми изоляторами. Для осмотра коллектора и щеткодержателей в остове двигателя имеются люки с крышками, обеспечивающими достаточную защиту от проникновения воды и грязи.

Вентилятор

В процессе работы необходимо охлаждать двигатель, так как с повышением температуры его обмоток снижается мощность двигателя. Вентилятор состоит из стальной втулки и силуминовой крыльчатки, скрепленных восемью заклепками. Лопатки крыльчатки расположены радиально для выброса воздуха в одном направлении. Вентилятор вращается вместе с якорем двигателя, создавая в нем разрежение. Потоки воздуха засасываются внутрь двигателя через отверстия со стороны коллектора. Часть воздушного потока омывает якорь, главные и добавочные полюса, другая проходит внутри коллектора и якоря по вентиляционным каналам. Воздух выталкивается наружу со стороны вентилятора через люк остова.

Устройство асинхронного двигателя с короткозамкнутым ротором

Асинхронный двигатель состоит из двух основных узлов: статора и ротора. На статоре размещают трехфазную обмотку, создающую вращающееся магнитное поле. Скорость вращения магнитного поля определяется частотой питающего двигатель тока и числом пар полюсов.

Обмотку ротора выполняют в виде так называемой «беличьей клетки». Она является короткозамкнутой и не имеет выводов. Беличья клетка состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора, набранного из листов электротехнической стали, без какой-либо изоляции. По торцам ротора устанавливают лопасти, образующие центробежный вентилятор. Ток в роторе наводится движущимся относительно него полем статора. Таким образом, для работы двигателя необходима разность скоростей вращения ротора и поля статора, что и отражено в его названии.

Характеристики тяговых двигателей

В таблице приведены технические характеристики коллекторных тяговых двигателей вагонов метрополитена:

Тип двигателя ДПМ-151 ДК-102А…Г SL-104n USL-421 ДК-104А ДК-104Г, Д ДК-108А ДК-108А1 ДК-108Г ДК-108Д ДК-112А ДК-115Г ДК-116А ДК-117А ДК-117ДМ ДК-120АМ
Тип вагонов А Г В2 В3 В1 Д Е Е Еж И Еж3 81-717/714 81-717.5/714.5 81-720/721
Год начала производства 1935 1940 1930 1930 1948 1949 1959 1959 1970 1973 1973 1975 1987 1991
Часовая мощность, кВт 153 83 100 70 80 73 64 68 66 66 68 90 72 110 112-114 115
Номинальное напряжение, В 750 375 750 375 375 375 375 375 375 375 375 375 375 375
Рабочее ослабление поля, % 65 44,5 40 40 35 28
Часовой ток, А 225 248 220 220 195 210 202 205 210 270 218 330 330-340 345
Часовая частота вращения, об/мин 950 / 968 1160 1300 1355 1530 1450 1510 1600 1600 1600 1360 1480 1480 1500
Длительный ток, А 173 205 185 175 182 178 178 185 230 185 295 290 295
Длительная частота вращения, об/мин 1075 1320 1455 1580 1600 1740 1220
Наибольший ток, А 450 500 440 420 420 440
Масса, кг 2340 1490 700 615 630 630 625 625 765 760 770
Число пар полюсов 2 2 2 2 2 2 2 2 2 2 2 2 2
Число коллекторных пластин 185 238 141 175 175 175 175 175 175 210 210
Возбуждение Посл. Посл. Посл. Посл. с подм. Посл. с подм. Посл. Посл. с подм. Посл. Посл. Посл.
Число витков обмотки ГП 38 16+16 33 30С+530Ш 30С 30 40 40 32 26 26
Сопротвиление обмотки якоря, Ом 0,066 0,041 0,068 0,086 0,078 0,092 0,092 0,092 0,066 0,034 0,0285
Сопротивление обмотки возбуждения, Ом 0,0615 0,0269 0,064 0,062+165 0,067+? 0,067 0,108 0,098 0,044 0,048 0,0312
Сопротивление добавочных полюсов, Ом 0,0338 0,0215 0,028 0,035 0,034 0,037 0,049 0,049 0,022 0,015 0,0103
Воздушный зазр под центром/краем полюса, мм 5 / 9 2,2 / 5 1,5 / 5,7 3,25 / 9 2,9 2,5 4 / 9

Конструкция используемых в настоящее время коллекторных тяговых двигателей ДК-117 и ДК-120 регламентируется техническими условиями ТУ 3355-029-05758196-02.

Характеристики коллекторных электродвигателей, применяемых на наземном городском транспорте:

  • Э. М. Добровольская «Электропоезда метрополитена»

Источник

Adblock
detector