Какие двигатели используются в качестве тяговых

КАКОМУ ДВИГАТЕЛЮ ОТДАТЬ ПРЕДПОЧТЕНИЕ?

Наибольшее распространение в промышленности получили электрические двигатели двух видов: переменного тока — трехфазные асинхронные и постоянного тока — коллекторные с различными способами возбуждения. Какой же из них лучше использовать на электровозе?
Двигатели, которые могут быть использованы в качестве тяговых на электровозе, должны удовлетворять как минимум двум требованиям. Прежде всего они должны допускать возможность регулирования в широких пределах частоты вращения. Это позволяет изменять скорость движения поезда. Кроме того, необходимо иметь возможность регулировать в широком диапазоне силу тяги, т. е. вращающий момент, развиваемый двигателем. Так, двигатели электровоза должны обеспечивать значительную силу тяги во время трогания поезда, его разгона, при преодолении крутых подъемов и т. п. и снижать ее при более легких условиях движения.
С точки зрения организации движения, казалось бы, желательно, чтобы поезда независимо от изменения сопротивления движению перемещались с постоянной скоростью или эта скорость снижалась бы незначительно. В этом случае зависимость между силой тяги F и скоростью движения и (рис. 11, а) представляла бы в прямоугольных осях координат вертикальную прямую линию 1, параллельную оси F, или слегка наклонную линию 2. Зависимость между силой тяги, развиваемой двигателями локомотива, и скоростью его движения называют тяговой характеристикой и представляют ее графически, как показано на рис. 11, или в виде таблиц.

Изображенные на рис. 11, (а) тяговые характеристики являются жесткими. В случае жесткой характеристики мощность, потребляемая двигателями и равная произведению силы тяги на скорость, например, на крутых подъемах, возрастает пропорционально увеличению силы тяги (произведение V1F1 значительно меньше V2F2, см. рис. 11, а). Резкое увеличение потребляемой мощности приводит к необходимости повышения мощности как самих двигателей, так и тяговых подстанций, увеличения площади сечения контактной подвески, что связано с затратами денежных средств и дефицитных материалов. Избежать этого можно, обеспечив характеристику двигателя, при которой с увеличением сопротивления движению поезда автоматически снижалась бы его скорость, т. е. так называемую мягкую характеристику (рис. 11, б). Она имеет вид кривой, называемой гиперболой. Двигатель с такой тяговой характеристикой работал бы при неизменной мощности (V1F1= V2F2). Однако при движении тяжелых составов на крутых подъемах, когда необходима большая сила тяги, поезда перемещались бы с очень низкой скоростью, тем самым резко ограничивая пропускную способность участка железной дороги. Примерно такой характеристикой обладают тепловозы, так как мощность их тяговых двигателей ограничена мощностью дизеля. Это относится и к паровой тяге, при которой мощность ограничивается производительностью котла.
Мощность, развиваемая тяговыми двигателями электровоза, практически не ограничена мощностью источника энергии. Ведь электровоз получает энергию через контактную сеть и тяговые подстанции от энергосистем, обычно обладающих мощностями, несоизмеримо большими мощности электровозов. Поэтому при создании электровозов стремятся получить характеристику, показанную на рис. 11, (б) штриховой линией. Электровоз, оборудованный двигателями с такой характеристикой, может развивать значительную силу тяги на крутых подъемах при сравнительно высокой скорости. Конечно, мощность, потребляемая тяговыми двигателями в условиях больших сил тяги, повышается (V1’F1 несколько больше V1F1), но это не приводит к резким перегрузкам питающей системы.

Трехфазные асинхронные двигатели самые распространенные. Достоинства их трудно переоценить: простота устройства и обслуживания, высокая надежность, низкая стоимость, несложный пуск. Однако, как известно, частота вращения асинхронного двигателя почти постоянна и мало зависит от нагрузки, она определяется частотой подводимого тока и числом пар полюсов двигателя. Поэтому регулировать частоту вращения таких двигателей, а следовательно, и скорость движения поездов можно только изменением частоты питающего тока и числа пар полюсов, что трудно осуществить. Кроме того, как уже отмечалось выше, для питания таких двигателей требуется устраивать сложную контактную сеть. Поэтому асинхронные двигатели до недавнего времени почти не применяли на электровозах.
Благодаря развитию полупроводниковой техники оказалось возможным создать преобразователи однофазного переменного тока в переменный трехфазный и регулировать их частоту. Это позволило построить электровозы, на которых в качестве тяговых используются трехфазные асинхронные двигатели. Подробнее о таких электровозах будет рассказано ниже. Отметим, что абсолютно жесткой характеристикой (см. рис. 11, а) обладает синхронный двигатель.
В какой же степени отвечают требованиям, предъявляемым к тяговым двигателям, электрические машины постоянного тока? Напомним, что эти машины — генераторы и двигатели — различаются по способу возбуждения.

Обмотка возбуждения может быть включена параллельно обмотке якоря (рис. 12, а) и последовательно с ней (рис. 12, б). Такие двигатели называют соответственно двигателями параллельного и последовательного возбуждения. Используют также двигатели, у которых имеются две обмотки возбуждения — параллельная и последовательная. Их называют двигателями смешанного возбуждения (рис. 12, в). Если обмотки возбуждения включены согласно, т. е. создаваемые ими магнитные потоки складываются, то такие двигатели называют двигателями согласного возбуждения ; если потоки вычитаются, то имеем двигатели встречного возбуждения . Применяют и независимое возбуждение : обмотка возбуждения питается от автономного (независимого) источника энергии (рис. 12, г).
Чтобы оценить возможности регулирования частоты вращения двигателя постоянного тока, напомним, что при вращении в магнитном поле проводников обмотки якоря двигателя в них возникает (индуцируется) электродвижущая сила (э. д. с). Направление ее определяют, пользуясь известным правилом правой руки. При этом ток, проходящий по проводникам якоря от источника энергии, направлен встречно индуцируемой э. д. с. Напряжение Uд, подведенное к двигателю, уравновешивается э. д. с., наводимой в обмотке якоря, и падением напряжения в обмот­ках двигателя:

где I — ток электродвигателя; rд — эквивалентное сопротивление обмоток двигателя.
Значение э. д. с. Е пропорционально магнитному потоку и частоте вращения, с которой проводники пересекают магнитные силовые линии, т. е.

где С1 — коэффициент, учитывающий конструктивные особенности двигателя (число пар полюсов, число активных проводников обмотки якоря и число параллельных ветвей обмотки якоря) и размерности величин, входящих в формулу; Ф — магнитный поток; n — частота вращения якоря двигателя. Тогда

Читайте также:  Причина толчков в двигателе

Эта формула позволяет определить зависимость между частотой вращения и магнитным потоком при постоянном значении приложенного напряжения. Эквивалентное сопротивление обмоток двигателя невелико и составляет обычно менее одной десятой Ома. Поэтому без ощутимой ошибки можно считать, что n ? Uд : C1Ф.
Следовательно, частоту вращения двигателя постоянного тока можно регулировать, изменяя подводимое к нему напряжение (прямая пропорциональность) или магнитный поток возбуждения (обратная пропорциональность) . Оба способа регулирования частоты вращения применяются на электровозах.
Как зависит вращающий момент от тока якоря? Если подключить проводники обмотки якоря двигателя к электрической сети, то проходящий по ним ток, взаимодействуя с магнитным полем полюсов, создаст силы, действующие на каждый проводник с током. В результате совместного действия этих сил создается вращающий момент М, пропорциональный току якоря и магнитному потоку полюсов Ф, т. е.

где Cм — коэффициент, который учитывает размерность величин, входящих в формулу, число проводников обмотки якоря и другие параметры двигателя.
Из этой формулы видно, что вращающий момент не зависит от подведенного напряжения.
Чтобы построить тяговую характеристику двигателя постоянного тока, необходимо установить, как изменяются частота вращения n и момент М в зависимости от тока при разных способах возбуждения двигателей. С увеличением нагрузки двигателей, например в случае преодоления подъема, при неизменном напряжении Uд будет возрастать и ток якоря, так как, чтобы преодолеть дополнительную нагрузку, двигатель должен развивать большую силу тяги, а следовательно, и мощность (как известно, Р= UдI).
Для двигателей с параллельным возбуждением можно считать, что ток возбуждения не изменяется с изменением нагрузки. Следовательно, не изменяется и магнитный поток. Так как сопротивление rд обмотки якоря невелико, то в соответствии с формулой (3) будет незначительно возрастать произведение Irд при постоянных Uд и Ф. Это значит, что частота вращения двигателя с параллельным возбуждением при увеличении нагрузки несколько уменьшается (рис. 13, а), а вращающий момент возрастает пропорционально увеличению тока, что графически изображается прямой линией, проходящей через начало координат.
Примерно такие же характеристики будут иметь двигатели с независимым возбуждением, если не изменяется ток возбуждения.

Рассмотрим те же характеристики для двигателя с последовательным возбуждением (см. рис. 12, б). У такого двигателя магнитный поток зависит от нагрузки, так как по обмотке возбуждения проходит ток якоря. Частота вращения якоря, как видно из формулы (4), обратно пропорциональна потоку и при увеличении тока якоря I, а значит и магнитного потока Ф, резко уменьшается (рис. 13, б). Вращающий момент двигателя, наоборот, резко возрастает, так как одновременно увеличиваются ток якоря и зависящий от него магнитный поток возбуждения.
В случае небольших нагрузок магнитный поток возрастает пропорционально току, а вращающий момент, как это следует из формулы (5),— пропорционально квадрату тока якоря. Если нагрузка увеличивается значительно, ток двигателя возрастет до такой степени, что наступит насыщение его магнитной системы. Это приведет к тому, что частота вращения будет снижаться уже в меньшей степени. Но тогда начнет более интенсивно возрастать ток, а значит, и потребляемая из сети мощность. При этом скорость движения поезда несколько стабилизируется. Зависимости частоты вращения якоря n, вращающего момента М и коэффициента полезного действия ? от потребляемого двигателем тока I называют электромеханическими характеристиками на валу тягового двигателя при неизменном напряжении Uд , подводимом к тяговому двигателю, и постоян­ной температуре обмоток 115°С (по ГОСТ 2582—81).
По электромеханическим характеристикам двигателя можно построить его тяговую характеристику. Для этого берут ряд значений тока и определяют по характеристикам соответствующие им частоту вращения и вращающий момент. По частоте вращения двигателя несложно подсчитать скорость движения поезда, так как известны передаточное число i редуктора и диаметр D круга катания колесной пары:

Поскольку в теории тяги пользуются размерностью частоты вращения якоря тягового электродвигателя, выраженной в об/мин, а скорость движения поезда измеряют в км/ч, то формула (6) с учетом коэффициента согласования этих размерностей принимает вид

Зная вращающий момент на валу двигателя, а также потери при передаче момента от вала тягового двигателя к колесной паре, которые характеризуют к. п. д. передачи можно получить и силу тяги, развиваемую одной, а затем и всеми колесными парами электровоза:

где Nкд — число тяговых двигателей локомотива или движущих колесных пар.
По полученным данным строят тяговую характеристику (см. рис. 11).
На электрических железных дорогах в качестве тяговых в подавляющем большинстве случаев используют двигатели постоянного тока с последовательным возбуждением, обладающие мягкой тяговой характеристикой. Такие двигатели, как отмечалось выше, при больших нагрузках вследствие снижения скорости потребляют меньшую мощность из системы электроснабжения.
Тяговые двигатели последовательного возбуждения имеют и другие преимущества по сравнению с двигателями параллельного возбуждения. В частности, при постройке тяговых двигателей устанавливают допуски на точность изготовления, на химический состав материалов для двигателей и т. п. Создать двигатели с абсолютно одинаковыми характеристиками практически невозможно. Вследствие различия характеристик тяговые двигатели, установленные на одном электровозе, при работе воспринимают неравные нагрузки. Более равномерно нагрузки распределяются между двигателями последовательного возбуждения, так как они имеют мягкую тяговую характеристику.
Однако двигатели последовательного возбуждения имеют и весьма существенный недостаток — электровозы с такими двигателями склонны к боксованию, иногда переходящему в разносное. Этот недостаток особенно резко проявился после того, когда масса поезда стала ограничиваться расчетным коэффициентом сцепления. Жесткая характеристика в значительно большей мере способствует прекращению боксования, так как в этом случае сила тяги резко снижается даже при небольшом скольжении и имеется больше шансов на восстановление сцепления. К недостаткам тяговых двигателей последовательного возбуждения относится и то, что они не могут автоматически переходить в режим электрического торможения: для этого необходимо предварительно изменить способ возбуждения тягового двигателя.

Читайте также:  Как рассчитать емкость рабочего конденсатора для однофазного двигателя

Источник

Наибольшее распространение в промышленности получили электрические двигатели двух видов: переменного тока — трехфазные асинхронные и постоянного тока — коллекторные с различными способами возбуждения. Какой же из них лучше использовать на электровозе?
Двигатели, которые могут быть использованы в качестве тяговых на электровозе, должны удовлетворять как минимум двум требованиям. Прежде всего они должны допускать возможность регулирования в широких пределах частоты вращения. Это позволяет изменять скорость движения поезда. Кроме того, необходимо иметь возможность регулировать в широком диапазоне силу тяги, т. е. вращающий момент, развиваемый двигателем. Так, двигатели электровоза должны обеспечивать значительную силу тяги во время трогания поезда, его разгона, при преодолении крутых подъемов и т. п. и снижать ее при более легких условиях движения.
С точки зрения организации движения, казалось бы, желательно, чтобы поезда независимо от изменения сопротивления движению перемещались с постоянной скоростью или эта скорость снижалась бы незначительно. В этом случае зависимость между силой тяги F и скоростью движения и (рис. 11, а) представляла бы в прямоугольных осях координат вертикальную прямую линию 1, параллельную оси F, или слегка наклонную линию 2. Зависимость между силой тяги, развиваемой двигателями локомотива, и скоростью его движения называют тяговой характеристикой и представляют ее графически, как показано на рис. 11, или в виде таблиц.

Изображенные на рис. 11, (а) тяговые характеристики являются жесткими. В случае жесткой характеристики мощность, потребляемая двигателями и равная произведению силы тяги на скорость, например, на крутых подъемах, возрастает пропорционально увеличению силы тяги (произведение V1F1 значительно меньше V2F2, см. рис. 11, а). Резкое увеличение потребляемой мощности приводит к необходимости повышения мощности как самих двигателей, так и тяговых подстанций, увеличения площади сечения контактной подвески, что связано с затратами денежных средств и дефицитных материалов. Избежать этого можно, обеспечив характеристику двигателя, при которой с увеличением сопротивления движению поезда автоматически снижалась бы его скорость, т. е. так называемую мягкую характеристику (рис. 11, б). Она имеет вид кривой, называемой гиперболой. Двигатель с такой тяговой характеристикой работал бы при неизменной мощности (V1F1= V2F2). Однако при движении тяжелых составов на крутых подъемах, когда необходима большая сила тяги, поезда перемещались бы с очень низкой скоростью, тем самым резко ограничивая пропускную способность участка железной дороги. Примерно такой характеристикой обладают тепловозы, так как мощность их тяговых двигателей ограничена мощностью дизеля. Это относится и к паровой тяге, при которой мощность ограничивается производительностью котла.
Мощность, развиваемая тяговыми двигателями электровоза, практически не ограничена мощностью источника энергии. Ведь электровоз получает энергию через контактную сеть и тяговые подстанции от энергосистем, обычно обладающих мощностями, несоизмеримо большими мощности электровозов. Поэтому при создании электровозов стремятся получить характеристику, показанную на рис. 11, (б) штриховой линией. Электровоз, оборудованный двигателями с такой характеристикой, может развивать значительную силу тяги на крутых подъемах при сравнительно высокой скорости. Конечно, мощность, потребляемая тяговыми двигателями в условиях больших сил тяги, повышается (V1’F1 несколько больше V1F1), но это не приводит к резким перегрузкам питающей системы.

Трехфазные асинхронные двигатели самые распространенные. Достоинства их трудно переоценить: простота устройства и обслуживания, высокая надежность, низкая стоимость, несложный пуск. Однако, как известно, частота вращения асинхронного двигателя почти постоянна и мало зависит от нагрузки, она определяется частотой подводимого тока и числом пар полюсов двигателя. Поэтому регулировать частоту вращения таких двигателей, а следовательно, и скорость движения поездов можно только изменением частоты питающего тока и числа пар полюсов, что трудно осуществить. Кроме того, как уже отмечалось выше, для питания таких двигателей требуется устраивать сложную контактную сеть. Поэтому асинхронные двигатели до недавнего времени почти не применяли на электровозах.
Благодаря развитию полупроводниковой техники оказалось возможным создать преобразователи однофазного переменного тока в переменный трехфазный и регулировать их частоту. Это позволило построить электровозы, на которых в качестве тяговых используются трехфазные асинхронные двигатели. Подробнее о таких электровозах будет рассказано ниже. Отметим, что абсолютно жесткой характеристикой (см. рис. 11, а) обладает синхронный двигатель.
В какой же степени отвечают требованиям, предъявляемым к тяговым двигателям, электрические машины постоянного тока? Напомним, что эти машины — генераторы и двигатели — различаются по способу возбуждения.

Обмотка возбуждения может быть включена параллельно обмотке якоря (рис. 12, а) и последовательно с ней (рис. 12, б). Такие двигатели называют соответственно двигателями параллельного и последовательного возбуждения. Используют также двигатели, у которых имеются две обмотки возбуждения — параллельная и последовательная. Их называют двигателями смешанного возбуждения (рис. 12, в). Если обмотки возбуждения включены согласно, т. е. создаваемые ими магнитные потоки складываются, то такие двигатели называют двигателями согласного возбуждения ; если потоки вычитаются, то имеем двигатели встречного возбуждения . Применяют и независимое возбуждение : обмотка возбуждения питается от автономного (независимого) источника энергии (рис. 12, г).
Чтобы оценить возможности регулирования частоты вращения двигателя постоянного тока, напомним, что при вращении в магнитном поле проводников обмотки якоря двигателя в них возникает (индуцируется) электродвижущая сила (э. д. с). Направление ее определяют, пользуясь известным правилом правой руки. При этом ток, проходящий по проводникам якоря от источника энергии, направлен встречно индуцируемой э. д. с. Напряжение Uд, подведенное к двигателю, уравновешивается э. д. с., наводимой в обмотке якоря, и падением напряжения в обмот­ках двигателя:

где I — ток электродвигателя; rд — эквивалентное сопротивление обмоток двигателя.
Значение э. д. с. Е пропорционально магнитному потоку и частоте вращения, с которой проводники пересекают магнитные силовые линии, т. е.

где С1 — коэффициент, учитывающий конструктивные особенности двигателя (число пар полюсов, число активных проводников обмотки якоря и число параллельных ветвей обмотки якоря) и размерности величин, входящих в формулу; Ф — магнитный поток; n — частота вращения якоря двигателя. Тогда

Читайте также:  Как помыть двигатель audi

Эта формула позволяет определить зависимость между частотой вращения и магнитным потоком при постоянном значении приложенного напряжения. Эквивалентное сопротивление обмоток двигателя невелико и составляет обычно менее одной десятой Ома. Поэтому без ощутимой ошибки можно считать, что n ? Uд : C1Ф.
Следовательно, частоту вращения двигателя постоянного тока можно регулировать, изменяя подводимое к нему напряжение (прямая пропорциональность) или магнитный поток возбуждения (обратная пропорциональность) . Оба способа регулирования частоты вращения применяются на электровозах.
Как зависит вращающий момент от тока якоря? Если подключить проводники обмотки якоря двигателя к электрической сети, то проходящий по ним ток, взаимодействуя с магнитным полем полюсов, создаст силы, действующие на каждый проводник с током. В результате совместного действия этих сил создается вращающий момент М, пропорциональный току якоря и магнитному потоку полюсов Ф, т. е.

где Cм — коэффициент, который учитывает размерность величин, входящих в формулу, число проводников обмотки якоря и другие параметры двигателя.
Из этой формулы видно, что вращающий момент не зависит от подведенного напряжения.
Чтобы построить тяговую характеристику двигателя постоянного тока, необходимо установить, как изменяются частота вращения n и момент М в зависимости от тока при разных способах возбуждения двигателей. С увеличением нагрузки двигателей, например в случае преодоления подъема, при неизменном напряжении Uд будет возрастать и ток якоря, так как, чтобы преодолеть дополнительную нагрузку, двигатель должен развивать большую силу тяги, а следовательно, и мощность (как известно, Р= UдI).
Для двигателей с параллельным возбуждением можно считать, что ток возбуждения не изменяется с изменением нагрузки. Следовательно, не изменяется и магнитный поток. Так как сопротивление rд обмотки якоря невелико, то в соответствии с формулой (3) будет незначительно возрастать произведение Irд при постоянных Uд и Ф. Это значит, что частота вращения двигателя с параллельным возбуждением при увеличении нагрузки несколько уменьшается (рис. 13, а), а вращающий момент возрастает пропорционально увеличению тока, что графически изображается прямой линией, проходящей через начало координат.
Примерно такие же характеристики будут иметь двигатели с независимым возбуждением, если не изменяется ток возбуждения.

Рассмотрим те же характеристики для двигателя с последовательным возбуждением (см. рис. 12, б). У такого двигателя магнитный поток зависит от нагрузки, так как по обмотке возбуждения проходит ток якоря. Частота вращения якоря, как видно из формулы (4), обратно пропорциональна потоку и при увеличении тока якоря I, а значит и магнитного потока Ф, резко уменьшается (рис. 13, б). Вращающий момент двигателя, наоборот, резко возрастает, так как одновременно увеличиваются ток якоря и зависящий от него магнитный поток возбуждения.
В случае небольших нагрузок магнитный поток возрастает пропорционально току, а вращающий момент, как это следует из формулы (5),— пропорционально квадрату тока якоря. Если нагрузка увеличивается значительно, ток двигателя возрастет до такой степени, что наступит насыщение его магнитной системы. Это приведет к тому, что частота вращения будет снижаться уже в меньшей степени. Но тогда начнет более интенсивно возрастать ток, а значит, и потребляемая из сети мощность. При этом скорость движения поезда несколько стабилизируется. Зависимости частоты вращения якоря n, вращающего момента М и коэффициента полезного действия ? от потребляемого двигателем тока I называют электромеханическими характеристиками на валу тягового двигателя при неизменном напряжении Uд , подводимом к тяговому двигателю, и постоян­ной температуре обмоток 115°С (по ГОСТ 2582—81).
По электромеханическим характеристикам двигателя можно построить его тяговую характеристику. Для этого берут ряд значений тока и определяют по характеристикам соответствующие им частоту вращения и вращающий момент. По частоте вращения двигателя несложно подсчитать скорость движения поезда, так как известны передаточное число i редуктора и диаметр D круга катания колесной пары:

Поскольку в теории тяги пользуются размерностью частоты вращения якоря тягового электродвигателя, выраженной в об/мин, а скорость движения поезда измеряют в км/ч, то формула (6) с учетом коэффициента согласования этих размерностей принимает вид

Зная вращающий момент на валу двигателя, а также потери при передаче момента от вала тягового двигателя к колесной паре, которые характеризуют к. п. д. передачи можно получить и силу тяги, развиваемую одной, а затем и всеми колесными парами электровоза:

где Nкд — число тяговых двигателей локомотива или движущих колесных пар.
По полученным данным строят тяговую характеристику (см. рис. 11).
На электрических железных дорогах в качестве тяговых в подавляющем большинстве случаев используют двигатели постоянного тока с последовательным возбуждением, обладающие мягкой тяговой характеристикой. Такие двигатели, как отмечалось выше, при больших нагрузках вследствие снижения скорости потребляют меньшую мощность из системы электроснабжения.
Тяговые двигатели последовательного возбуждения имеют и другие преимущества по сравнению с двигателями параллельного возбуждения. В частности, при постройке тяговых двигателей устанавливают допуски на точность изготовления, на химический состав материалов для двигателей и т. п. Создать двигатели с абсолютно одинаковыми характеристиками практически невозможно. Вследствие различия характеристик тяговые двигатели, установленные на одном электровозе, при работе воспринимают неравные нагрузки. Более равномерно нагрузки распределяются между двигателями последовательного возбуждения, так как они имеют мягкую тяговую характеристику.
Однако двигатели последовательного возбуждения имеют и весьма существенный недостаток — электровозы с такими двигателями склонны к боксованию, иногда переходящему в разносное. Этот недостаток особенно резко проявился после того, когда масса поезда стала ограничиваться расчетным коэффициентом сцепления. Жесткая характеристика в значительно большей мере способствует прекращению боксования, так как в этом случае сила тяги резко снижается даже при небольшом скольжении и имеется больше шансов на восстановление сцепления. К недостаткам тяговых двигателей последовательного возбуждения относится и то, что они не могут автоматически переходить в режим электрического торможения: для этого необходимо предварительно изменить способ возбуждения тягового двигателя.

Источник

Adblock
detector