Какая часть двигателя определяет допустимую температуру его нагрева

Контроль за температурой нагрева электрических двигателей

Допустимый нагрев электрических двигателей зависит от класса изоляции обмоток. Переход на более высокий класс изоляции электродвигателя может быть осуществлен только при капитальном ремонте.

Необходимо знать, что с повышением температуры обмоток электродвигателей сверх допустимых значений, резко сокращается срок службы изоляции.

Температурой окружающего воздуха, при которой электродвигатель может работать с номинальной мощностью, считается 40 С. При повышении температуры окружающего воздуха выше 40 гр С, нагрузка на электродвигатель должна быть снижена настолько, чтобы температура отдельных его частей не превышала допустимых значений.

Предельные допустимые превышения температуры активных частей электродвигателей и при температуре окружающей среды 40 гр С не должна превышать: 65 гр С для изоляции класса А; 80 гр С для изоляции класса Е; 90 гр С для изоляции класс В; 110 гр С для изоляции класса Г; 135 гр С для изоляции класса Н.

У асинхронных двигателей с уменьшением напряжения питающей сети, в квадрате уменьшается мощность на валу двигателя. Кроме того снижение напряжения ниже 95% от номинального приводит к значительному росту тока двигателя и нагреву его обмоток. Рост напряжения выше 110% от номинального также ведет к росту тока в обмотках двигателя и увеличивается нагрев статора за счет вихревых токов.

Независимо от снижения температуры окружающего воздуха увеличивать токовые нагрузки более чем на 10% номинального не допускается.

Источник

Нагрев и охлаждение электродвигателей

Правильное определение мощности электродвигателей для различных станков, механизмов и машин имеет большое значение. При недостаточной мощности нельзя полностью использовать производственные возможности станка, осуществить намеченный технологический процесс. При недостаточной мощности электродвигатель преждевременно выходит из строя.

Завышение мощности электродвигателя влечет за собой систематическую недогрузку его и вследствие этого неполное использование двигателя, работу его с низким к. п. д. и небольшим коэффициентом мощности (у асинхронных двигателей). Кроме этого при завышенной мощности двигателя возрастают капитальные и эксплуатационные затраты.

Необходимая для работы станка мощность, а следовательно, и мощность, развиваемая электродвигателем, изменяются во время работы станка. Нагрузка электродвигателя может быть охарактеризована нагрузочным графиком (рис. 1), представляющим собой зависимость мощности на валу электродвигателя, его момента или тока от времени. После окончания обработки заготовки останавливают станок, измеряют деталь и меняют заготовку. Затем нагрузочный график снова повторяется (при обработке однотипных деталей).

Для обеспечения нормальной работы при подобной переменной нагрузке электродвигатель должен развивать наибольшую мощность, требуемую в процессе обработки, и не перегреваться свыше нормы при длительной работе по данному нагрузочному графику. Допустимая перегрузка электродвигателей определяется их электрическими свойствами.

Рис. 1. Нагрузочный график при обработке однотипных деталей

При работе двигателя в нем возникают потери энергии (и мощности), что вызывает его нагрев. Часть потребляемой электродвигателем мощности расходуется на нагрев его обмоток, на нагрев магнитопровода от гистерезиса и вихревых токов, на трение в подшипниках и на трение о воздух. Потери на нагрев обмоток, пропорциональные квадрату тока, называют переменными (ΔРпер) . Остальные потери в двигателе от его нагрузки зависят мало и их условно называют постоянными (ΔРпос) .

Допустимый нагрев электродвигателя определяется наименее теплостойкими материалами его конструкции. Таким материалом является изоляция его обмотки.

Для изоляции электрических машин применяют:

• хлопчатобумажные и шелковые ткани, пряжу, бумагу и волокнистые органические материалы, не пропитанные изолирующими составами (класс нагревостойкости У);

• те же материалы, пропитанные (класс А);

• синтетические органические пленки (класс Е);

• материалы из асбеста, слюды, стекловолокна с органическими связующими веществами (класс В);

• те же, но с синтетическими связующими и пропитывающими веществами (класс F);

• те же материалы, но с кремнийорганическими связующими и пропитывающими веществами (класс Н);

• слюду, керамику, стекло, кварц без связующих веществ или с неорганическими связующими составами (класс С).

Изоляции классов У, А, Е, В, F, Н соответственно допускает предельные температуры в 90, 105, 120, 130, 155, 180° С. Предельная температура класса С превышает 180° С и ограничивается свойствами примененных материалов.

При одной и той же нагрузке электродвигателя нагрев его будет неодинаковым при разных температурах окружающей среды. Расчетная температура t0 окружающей среды равна 40° С. При этой температуре определяют значения номинальной мощности электродвигателей. Превышение температуры электродвигателя над температурой окружающей среды называют перегревом :

Читайте также:  Каким цветом покрасить блок двигателя

Расширяется применение синтетических изоляций. В частности, кремнийорганические изоляции обеспечивают высокую надежность электрических машин при эксплуатации в тропических условиях.

Тепло, выделяемое в различных частях электродвигателя, в различной степени влияет на нагрев изоляции. Кроме того, между отдельными частями электродвигателя происходит теплообмен, характер которого изменяется в зависимости от условий нагрузки.

Различный нагрев отдельных частей электродвигателя и теплообмен между ними затрудняет аналитическое исследование процесса. Поэтому для упрощения условно принимают, что электродвигатель представляет собой однородное в тепловом отношении и бесконечно теплопроводное тело. Обычно считают, что тепло, отдаваемое электродвигателем в окружающую среду, пропорционально перегреву. Излучением тепла при этом пренебрегают, так как абсолютные температуры нагрева двигателей невелики. Рассмотрим процесс нагрева электродвигателя при указанных допущениях.

При работе в электродвигателе за время dt выделяется теплота dq. Часть этой теплоты dq1 поглощается массой электродвигателя, вследствие чего повышаются температура t и перегрев τ двигателя. Остальная теплота dq2 выделяется двигателем в окружающую среду. Таким образом, может быть записано равенство

По мере повышения температуры электродвигателя возрастает тепло dq2. При некотором значении перегрева окружающей среде будет отдаваться столько тепла, сколько ее выделяется в электродвигателе; тогда dq = dq2 и dq1 = 0. Температура электродвигателя перестает повышаться, и перегрев достигает установившегося значения τу.

При указанных выше допущениях уравнение может быть записано так:

где Q — тепловая мощность, обусловленная потерями в электродвигателе, Дж/с; А—теплоотдача двигателя, т.е. количество теплоты, выделяемое двигателем в окружающую среду в единицу времени при разности температур двигателя и окружающей среды в 1oС, Дж/с-град; С — теплоемкость двигателя, т.е. количество теплоты, необходимое для повышения температуры двигателя на 1°С, Дж/град.

Разделив переменные в уравнении, имеем

Интегрируем левую часть равенства в пределах от нуля до некоторого текущего значения времени t и правую часть в пределах от некоторого начального перегрева τ0 электродвигателя до текущего значения перегрева τ:

Решая уравнение относительно τ, получим уравнение нагрева электродвигателя :

Обозначим C/A=T и определим размерность этого соотношения:

Рис. 2. Кривые, характеризующие нагрев электродвигателя

Рис. 3. Определение постоянной времени нагрева

Величину Т, имеющую размерность времени, называют постоянной времени нагрева электродвигателя. В соответствии с этим обозначением уравнение нагрева может быть переписано в виде

Как видно из уравнения при получим — установившееся значение перегрева.

При изменении нагрузки электродвигателя изменяется величина потерь, а следовательно, и значение Q. Это влечет за собой изменение величины τу.

На рис. 2 приведены кривые нагрева 1, 2, 3, соответствующие последнему уравнению, для различных значений нагрузки. Когда τу превышает величину допустимого перегрева τн, недопустима продолжительная работа электродвигателя. Как следует из уравнения и графиков (рис. 2), нарастание перегрева носит асимптотический характер.

При подстановке в уравнение значения t = 3T получим значение τ, примерно лишь на 5% меньшее τу. Таким образом, за время t = 3Т процесс нагрева практически можно считать законченным.

Если в произвольной точке с кривой нагрева (рис. 3) провести касательную к кривой нагрева, затем через ту же точку провести вертикаль, то отрезок de асимптоты, заключенный между касательной и вертикалью, в масштабе оси абсцисс равен Т. Если в уравнении принять Q = 0, получим уравнение охлаждения электродвигателя:

Этому уравнению соответствует кривая охлаждения, изображенная на рис.4.

Величина постоянной времени нагрева определяется размерами электродвигателя и формой защиты его от воздействий окружающей среды. У открытых и защищенных электродвигателей малой мощности постоянная времени нагрева равна 20—30 мин. У закрытых электродвигателей большой мощности она доходит до 2—3 ч.

Как было указано выше, изложенная теория нагрева электрических двигателей является приближенной и основана на грубых допущениях. Поэтому кривая нагрева, снятая экспериментально, существенно отличается от теоретической. Если для различных точек опытной кривой нагрева выполнить построение, показанное на рис. 3, то окажется, что значения Т возрастают по мере увеличения времени. Поэтому все расчеты, производимые по уравнению следует рассматривать как приближенные. В этих расчетах целесообразно использовать постоянную Т, определенную графически для начальной точки кривой нагрева. Это значение Т является наименьшим и при его использовании обеспечивается некоторый запас мощности двигателя.

Читайте также:  Как оформить переделку двигателя в авто

Рис. 4. Кривая охлаждения электродвигателя

Кривая охлаждения, снятая экспериментально, еще более отличается от теоретической, чем кривая нагрева. Постоянная времени охлаждения, соответствующая отключенному двигателю, значительно больше постоянной времени нагрева вследствие уменьшения теплоотдачи при отсутствии вентиляции.

Источник

Допустимые показатели рабочей температуры электродвигателя

Во избежание перегрева агрегата и его преждевременного выхода из строя необходимо знать, какая температура должна быть у электродвигателя того или иного типа.

Классы нагревостойкости изоляции обмоток

Уровень допустимого нагрева зависит от класса нагревостойкости изоляции обмоток, которая является наименее теплостойкой частью конструкции. Он условно обозначается следующими маркерами:

  • У – предельная t 90 С. Материалы – бумага, пряжа, шелковые или хлопчатобумажные ткани без пропитки изолирующим составом.
  • А — предельная t 105 С. Материалы те же, но с пропиткой.
  • Е — предельная t 120 С. Материал – синтетическая органическая пленка.
  • В — предельная t 130 С. Материалы – стекловолокно, слюда, асбест с органическим связующим веществом.
  • F — предельная t 155 С. Материалы те же что и в В c синтетическим пропитывающим и связующим веществом.
  • Н — предельная t 180 С. Материалы те же что в В с кремнийорганическим пропитывающим и связующим веществом.
  • С — предельная t от 180 С и выше. Материалы – стекло, керамика, кварц, слюда с неорганическим связующим составом или без. Допустимая температура электродвигателя при работе в этом случае ограничивается только свойствами изоляционных материалов.

Для перехода электродвигателя на более высокий класс требуется его капитальный ремонт.

Температурный режим эксплуатации электродвигателей

Для того чтобы двигатель работал с номинальной мощностью, температура окружающей среды не должна превышать 40 С. При ее увеличении следует снизить нагрузку на агрегат и следить за тем, чтобы температура отдельных узлов не превышала допустимого значения.

Температура электродвигателя во время работы повышается при увеличении тока устройства, что может быть спровоцировано уменьшением напряжения в питающей сети до 95% и ниже. Рост напряжения сети свыше 110% также негативно сказывается на температурном режиме двигателя, так как из-за вихревых потоков нагревается статор и растет ток в обмотках, из-за чего они перегреваются.

Исследования показывают, что нагрев изоляции на каждые 8 С сверх допустимой нормы вдвое уменьшает срок ее службы. Поэтому, если вы не хотите, чтобы агрегат вышел из строя раньше времени, перед началом его эксплуатации необходимо выяснить, какая рабочая температура электродвигателя приемлема, и строго соблюдать правила, не допуская перегрева и увеличения токовых нагрузок более чем на 10%.

Источник

Тепловой режим и номинальная мощность двигателя

При работе электродвигателя возникают потери , на покрытие которых расходуется часть потребляемой им электрической энергии. Потери возникают в активном сопротивлении обмоток, в стали при изменении магнитного потока в магнитопроводе, а также механические потери на трение в подшипниках и трение о воздух вращающихся частей машины. В конечном итоге вся энергия потерь превращается в тепловую энергию, идущую на нагрев двигателя и рассеивающуюся в окружающей среде.

Потери в двигателе бывают постоянные и переменные. К постоянным относятся потери в стали и механические и потери в обмотках, где ток постоянен, к переменным — потери в обмотках двигателя.

В начальный период после включения большая часть выделяющегося в двигателе тепла идет на повышение его температуры, а меньшая поступает в окружающую среду. Затем по мере увеличения температуры двигателя все большее количество тепла передается в окружающую среду, и наступает момент, когда все выделяемое тепло рассеивается в пространстве. Тогда наступает тепловое равновесие, и дальнейшее повышение температуры двигателя прекращается. Такая температура нагрева двигателя называется установившейся. Установившаяся температура с течением времени остается постоянной, если нагрузка двигателя не изменяется.

Количество тепла Q, которое выделяется в двигателе за 1 с, можно определить по формуле

где η — КПД двигателя; Р2— мощность на валу двигателя.

Из формулы следует, что чем больше нагрузки двигателя, тем больше тепла в нем выделяется и тем выше его установившаяся температура.

Опыт эксплуатации электродвигателей показывает, что основной причиной их выхода из строя является перегрев обмотки. Пока температура изоляции не превышает допустимого значения, тепловой износ изоляции нарастает очень медленно. Но по мере превышения температуры износ изоляции резко возрастает. Практически считают, что перегрев изоляции на каждые 8°С снижает срок ее службы вдвое. Так, двигатель с хлопчатобумажной изоляцией обмоток при номинальной нагрузке и температуре нагрева до 105 °С может работать около 15 лет, при перегрузке и повышении температуры до 145 °С двигатель выйдет из строя уже через 1,5 месяца.

Читайте также:  Характеристика двигателя опель вектра а 2000

По ГОСТ изоляционные материалы, используемые в электромашиностроении, по нагревостойкости делятся на семь классов, для каждого из которых устанавливается максимально допустимая температура (табл. 1).

Допустимое превышение температуры обмотки двигателя над температурой окружающей среды (в СССР принято + 35 °С) для класса нагревостойкости Y составляет 55 °С, для класса А — 70° С, для класса В — 95° С, для класса Я—145° С, для класса G более 155 °С. Превышение температуры данного двигателя зависит от величины его нагрузки и режима работы. При температуре окружающей среды ниже 35 °С двигатель можно нагрузить выше его номинальной мощности, но так, чтобы при этом температура нагрева изоляции не превышала допустимые нормы.

Характеристика материала Класс нагревостойкости Предельно допустимая температура, °С
Непропитанные хлопчатобумажные ткани, пряжа, бумага и волокнистые материалы из целлюлозы и шелка Y 90
Те же материалы, но пропитанные связующими А 105
Некоторые синтетические органические пленки Е 120
Материалы из слюды, асбеста и стекловолокна, содержащие органические связующие вещества В 130
Те же материалы в сочетании с синтетическими связующими и пропитывающими веществами F 155
Те же материалы, но в сочетании с кремний органическими связующими и пропитывающими составами Н 180
Слюда, керамические материалы, стекло, кварц, асбест, применяемые без связующих составов или с неорганическими связующими составами G более 180

Исходя из известного количества тепла Q , выделенного при работе двигателя, можно подсчитать превышение температуры двигателя τ °С над температурой окружающей среды, т. е. температуру перегрева

где А — теплоотдача двигателя, Дж/град•с; е —основание натуральных логарифмов (е = 2,718); С — теплоемкость двигателя, Дж/град; τ о — начальное превышение температуры двигателя при τ .

Установившаяся температура двигателя τу может быть получена из предыдущего выражения, если принять τ = ∞ . Тогда τу = Q / А . При τо = 0 равенство (2) примет вид

Обозначим отношение С/А через Т, тогда

где Т — постоянная времени нагрева, с.

Постоянная нагрева — это время, в течение которого двигатель нагрелся бы до установившейся температуры при отсутствии теплоотдачи в окружающую среду. При наличии теплоотдачи температура нагрева будет меньше и равна

Постоянная времени может быть найдена графически (рис.1, а). Для этого из начала координат проводят касательную ОС до пересечения с горизонтальной прямой, проходящей через точку а, соответствующую температуре установившегося нагрева. Отрезок вс будет равен Т, а отрезок ав — времени t у, в течение которого двигатель достигнет установившейся температуры τу . Обычно принимают равным 4T.

Постоянная нагрева зависит от номинальной мощности двигателя, частоты его вращения, конструкции и способа охлаждения, но не зависит от величины его нагрузки.

Рис. 1. Кривые нагрева и охлаждения двигателя: а — графическое определение постоянной нагрева; б — кривые нагрева при различных нагрузках

Если двигатель, после того как он нагреется, отключить от сети, то, начиная с этого момента, он уже не выделяет тепла, а накопленное тепло продолжает рассеиваться в окружающей среде, двигатель охлаждается.

Уравнение охлаждения имеет вид

а кривая показана на рис. 1, а.

В выражении То — постоянная времени охлаждения. Она отличается от постоянной времени нагрева Т, так как теплоотдача двигателя, находящегося в покое, отличается от теплоотдачи работающего двигателя. Равенство возможно в том случае, когда двигатель, отключенный от сети, имеет постороннюю вентиляцию. Обычно кривая охлаждения идет более полого, чем кривая нагрева. У двигателей с внешним обдувом То больше Т примерно в 2 раза. Практически можно считать, что через промежуток времени от 3То до 5То температура двигателя становится равной температуре окружающей среды.

При правильном выборе номинальной мощности двигателя установившаяся температура перегрева должна быть равна допустимому превышению температуры τдоп , соответствующему классу изоляции обмоточного провода. Различным нагрузкам P1

Исходя из изложенного можно дать следующее определение номинальной мощности двигателя. Номинальная мощность двигателя представляет собой мощность на валу, при которой температура его обмотки превышает температуру окружающей среды на величину, соответствующую принятым нормам перегрева.

Источник

Adblock
detector