Как возникает вращающий момент в асинхронном двигателе

Вращающий момент асинхронного двигателя

§ 93. ВРАЩАЮЩИЙ МОМЕНТ АСИНХРОННОГО ДВИГАТЕЛЯ

Вращающий момент асинхронного двигателя создается при взаимодействии вращающегося магнитного поля статора с токами в проводниках обмотки ротора. Поэтому вращающий момент зави­сит как от магнитного потока статора Фт, так и от силы тока в обмотке ротора I2. Однако в создании вращающего момента уча­ствует только активная мощность, потребляемая машиной из сети. Вследствие этого вращающий момент зависит не от силы тока в обмотке ротора I2, а только от его активной составляющей, т. е. I2 cos ψ2, где ψ2 — фазный угол между э. д. с. и током в обмотке ротора.

Таким образом, вращающий момент асинхронного двигателя определяется следующим выражением:

где С — конструктивная постоянная машины, зависящая от числа ее полюсов и фаз, числа витков обмотки статора, конструк­тивного выполнения обмотки и принятой системы единиц. При условии постоянства приложенного напряжения магнит­ный поток остается также почти постоянным при любом изменении нагрузки двигателя.

Таким образом, в выражении вращающего момента величины С и Фт постоянны и вращающий момент пропорционален только активной составляющей тока в обмотке ротора, т. е.

Изменение нагрузки или тормозного момента на валу двига­теля изменяет и скорость вращения ротора и скольжения.

Изменение скольжения вызывает изменение как силы тока в роторе I2, так и ее активной составляющей I2 cos ψ2/

Можно силу тока в роторе определить отношением э.д. с. к пол­ному сопротивлению, т. е.

где Z2, r2 и Х2 — полное, активное и реактивное сопротивления фазы обмотки ротора.

Изменение скольжения изменяет частоту тока ротора. При не­подвижном роторе (n2=0 и S = 1) вращающееся поле с одинако­вой скоростью пересекает проводники обмотки статора и ротора и частота тока в роторе равна частоте тока сети (f2=f1). При уменьшении скольжения обмотка ротора пересекается магнитным полем с меньшей частотой, так что частота тока в роторе умень­шается. Когда ротор вращается синхронно с полем (n2=n1 и S=0), проводники обмотки ротора не пересекаются магнитным полем, так что частота тока в роторе равна нулю f2=0. Таким образом, частота тока в роторе пропорциональна скольжению, т. е. f2=Sf1

Активное сопротивление обмотки ротора почти не зависит от частоты, тогда как э.д.с и реактивное сопротивление пропорциональны частоте, т. е. изменяются с изменением скольжения, и могут быть определены следующими выражениями:

где Е и X — э. д. с. и индуктивное сопротивление фазы обмотки неподвижного ротора соответственно.

Таким образом, имеем:

и вращающий момент

Следовательно, при небольших скольжениях (примерно до 20%), когда SХ мало по сравнению с r2, увеличение скольжения вызывает увеличение вращающего момента, так как при этом воз, растает активная составляющая тока в ротоке (I2соs ψ2). При больших скольжениях (SХ больше, чем r2) увеличение скольже­ния будет вызывать уменьшение вращающего момента. Таким об­разом, при больших скольжениях его увеличение хотя и увеличи­вает силу тока в роторе I2, но ее активная составляющая I2 соs ψ2 и, следовательно, вращающий мо­мент уменьшаются вследствие значительного увеличения реактивного соя противления обмотки ротора.

На рис. 114 показана зависимость вращающего момента от скольжения. При некотором скольжении Sт (примерно 20%) двигатель развивает максимальный мо­мент, который определяет перегрузочную способность двигателя и обычно в 2—3 раза превышает номи­нальный момент.

Устойчивая работа двигателя возможна только на восходящей ветви кривой зависимости момента от скольжения, т. е. при изменении скольжения в пределах от 0 до Sт. Работа двигателя на нисходящей ветви указанной зависимости, т. е. при скольжении S>Sт, невозможна, так как здесь не обеспе­чивается устойчивое равновесие моментов.

Если предположить, что вращающий момент был равен тормоз­ному (Мвр=Мторм) в точках А и Б, то при случайном нарушении равновесия моментов в одном случае оно восстанавливается, а в другом не восстанавливается. Допустим, что вращающий момент двигателя почему-либо уменьшился (например, при понижений напряжения сети), тогда скольжение начнет увеличиваться. Если равновесие моментов было в точке А, то увеличение скольжения вызовет увеличение вращающего момента двигателя и он станет вновь равным тормозному моменту, т. е. равновесие моментов вос­становится. Если же равновесие моментов было в точке Б, то увеличение скольжения вызовет уменьшение вращающего момента, который будет оставаться всегда меньше тормозного, т. е. равновесие моментов не восстановится и скорость вращения ротора бу­дет непрерывно уменьшаться до полной остановки двигателя.

Если приложить к валу двигателя тормозной момент, больший максимального момента, то равновесие моментов не восстановится и ротор двигателя остановится.

.

Вращающий момент двигателя пропорционален квадрату при­ложенного напряжения, так как пропорциональны напряжению как магнитный поток, так и сила тока в роторе. Поэтому изменение напряжения в сети вызывает значительное изменение вращаю­щего момента.

Источник

Вращающий момент асинхронного двигателя

§ 93. ВРАЩАЮЩИЙ МОМЕНТ АСИНХРОННОГО ДВИГАТЕЛЯ

Вращающий момент асинхронного двигателя создается при взаимодействии вращающегося магнитного поля статора с токами в проводниках обмотки ротора. Поэтому вращающий момент зави­сит как от магнитного потока статора Фт, так и от силы тока в обмотке ротора I2. Однако в создании вращающего момента уча­ствует только активная мощность, потребляемая машиной из сети. Вследствие этого вращающий момент зависит не от силы тока в обмотке ротора I2, а только от его активной составляющей, т. е. I2 cos ψ2, где ψ2 — фазный угол между э. д. с. и током в обмотке ротора.

Читайте также:  Стук в двигателе при переключении передач

Таким образом, вращающий момент асинхронного двигателя определяется следующим выражением:

где С — конструктивная постоянная машины, зависящая от числа ее полюсов и фаз, числа витков обмотки статора, конструк­тивного выполнения обмотки и принятой системы единиц. При условии постоянства приложенного напряжения магнит­ный поток остается также почти постоянным при любом изменении нагрузки двигателя.

Таким образом, в выражении вращающего момента величины С и Фт постоянны и вращающий момент пропорционален только активной составляющей тока в обмотке ротора, т. е.

Изменение нагрузки или тормозного момента на валу двига­теля изменяет и скорость вращения ротора и скольжения.

Изменение скольжения вызывает изменение как силы тока в роторе I2, так и ее активной составляющей I2 cos ψ2/

Можно силу тока в роторе определить отношением э. д. с. к пол­ному сопротивлению, т. е.

где Z2, r2 и Х2 — полное, активное и реактивное сопротивления фазы обмотки ротора.

Изменение скольжения изменяет частоту тока ротора. При не­подвижном роторе (n2=0 и S = 1) вращающееся поле с одинако­вой скоростью пересекает проводники обмотки статора и ротора и частота тока в роторе равна частоте тока сети (f2=f1). При уменьшении скольжения обмотка ротора пересекается магнитным полем с меньшей частотой, так что частота тока в роторе умень­шается. Когда ротор вращается синхронно с полем (n2=n1 и S=0), проводники обмотки ротора не пересекаются магнитным полем, так что частота тока в роторе равна нулю f2=0. Таким образом, частота тока в роторе пропорциональна скольжению, т. е. f2=Sf1

Активное сопротивление обмотки ротора почти не зависит от частоты, тогда как э. д.с и реактивное сопротивление пропорциональны частоте, т. е. изменяются с изменением скольжения, и могут быть определены следующими выражениями:

где Е и X — э. д. с. и индуктивное сопротивление фазы обмотки неподвижного ротора соответственно.

Таким образом, имеем:

и вращающий момент

Следовательно, при небольших скольжениях (примерно до 20%), когда SХ мало по сравнению с r2, увеличение скольжения вызывает увеличение вращающего момента, так как при этом воз, растает активная составляющая тока в ротоке (I2соs ψ2). При больших скольжениях (SХ больше, чем r2) увеличение скольже­ния будет вызывать уменьшение вращающего момента. Таким об­разом, при больших скольжениях его увеличение хотя и увеличи­вает силу тока в роторе I2, но ее активная составляющая I2 соs ψ2 и, следовательно, вращающий мо­мент уменьшаются вследствие значительного увеличения реактивного соя противления обмотки ротора.

На рис. 114 показана зависимость вращающего момента от скольжения. При некотором скольжении Sт (примерно 20%) двигатель развивает максимальный мо­мент, который определяет перегрузочную способность двигателя и обычно в 2—3 раза превышает номи­нальный момент.

Устойчивая работа двигателя возможна только на восходящей ветви кривой зависимости момента от скольжения, т. е. при изменении скольжения в пределах от 0 до Sт. Работа двигателя на нисходящей ветви указанной зависимости, т. е. при скольжении S>Sт, невозможна, так как здесь не обеспе­чивается устойчивое равновесие моментов.

Если предположить, что вращающий момент был равен тормоз­ному (Мвр=Мторм) в точках А и Б, то при случайном нарушении равновесия моментов в одном случае оно восстанавливается, а в другом не восстанавливается. Допустим, что вращающий момент двигателя почему-либо уменьшился (например, при понижений напряжения сети), тогда скольжение начнет увеличиваться. Если равновесие моментов было в точке А, то увеличение скольжения вызовет увеличение вращающего момента двигателя и он станет вновь равным тормозному моменту, т. е. равновесие моментов вос­становится. Если же равновесие моментов было в точке Б, то увеличение скольжения вызовет уменьшение вращающего момента, который будет оставаться всегда меньше тормозного, т. е. равновесие моментов не восстановится и скорость вращения ротора бу­дет непрерывно уменьшаться до полной остановки двигателя.

Если приложить к валу двигателя тормозной момент, больший максимального момента, то равновесие моментов не восстановится и ротор двигателя остановится.

.

Вращающий момент двигателя пропорционален квадрату при­ложенного напряжения, так как пропорциональны напряжению как магнитный поток, так и сила тока в роторе. Поэтому изменение напряжения в сети вызывает значительное изменение вращаю­щего момента.

§ 94. РАБОЧИЕ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ

Рабочие характеристики асинхронного двигателя представляют собой зависимости скольжения S, числа оборотов ротора n2, раз­виваемого момента М, потребляемого тока I1, расходуемой мощности Р1, коэффициента мощности соs  и к. п. д. η от полезной мощности Р2 на валу машины. Эти характеристики (рис. 115) снимаются три естественных условиях работы двигателя, т. е. двигатель нерегулируемый, частота f1 и напряжение U1 се­ти остаются постоянными, а изменяется только нагрузка на валу двигателя.

При увеличении нагрузки на валу двигателя скольжение возрастет, причем при боль­ших нагрузках скольжение увеличивается несколько быст­рее, чем при малых.

При холостом ходе двигателя п2=n1 или S=0.

При номинальной нагрузке скольжение обычно составляет S = 3-5%.

Скорость вращения ротора

Так как при увеличении нагрузки на валу двигателя скольжение возрастает, то число оборотов будет уменьшаться. Однако из­менение скорости вращения при увеличении нагрузки от 0 до номи­нальной очень незначительно и не превышает 5%. Поэтому скоро­стная характеристика асинхронного двигателя является жесткой — она имеет очень малый наклон к горизонтальной оси.

Читайте также:  Троить двигатель toyota camry

Вращающий момент, развиваемый двигателем М, уравновешен тормозным моментом на валу М2 и моментом, идущим на преодоление механических потерь М0, т. е.

где Р2 — полезная мощность двигателя,

2 — угловая скорость ротора.

При холостом ходе двигателя вращающий момент равен М0; с увеличением нагрузки на валу этот момент также увеличивается, причем за счет некоторого уменьшения скорости ротора увеличение вращающего момента происходит быстрее, чем увеличение полезной мощности на валу.

Источник

Как возникает вращающий момент в асинхронном двигателе

§ 108. Вращающий момент асинхронного двигателя

Принцип действия асинхронного двигателя, как указывалось, основан на взаимодействии вращающегося поля и тока, индуктированного этим полем в обмотке ротора.

В результате взаимодействия магнитного потока Φ с током I2, протекающим в проводниках обмотки ротора, возникают электромагнитные силы, приводящие ротор во вращение.

Поэтому вращающий момент, создаваемый на валу двигателя, зависит от величины тока ротора I2 и от магнитного потока Φ.

Кроме того, на величину вращающего момента асинхронного двигателя влияет сдвиг фаз Ψ2 между током I2 и э.д.с. ротора. Для уяснения влияния cos Ψ2 рассмотрим картину электромагнитных сил, действующих на проводники ротора.

Рассмотрим сначала случай, когда индуктивность обмотки ротора мала и поэтому сдвигом фаз между током и э.д.с. можно пренебречь (рис. 255, а). Вращающееся магнитное поле статора здесь заменено полем полюсов N и S, вращающимся, предположим, по направлению часовой стрелки. Пользуясь правилом «правой руки», определяем направление э.д.с. и токов в обмотке ротора. Токи ротора, взаимодействуя с вращающимся магнитным полем, создают момент вращения. Направления сил, действующих на проводники с током, определяются по правилу «левой руки». Как видно из чертежа, ротор под действием электромагнитных сил будет вращаться в ту же сторону, что и само вращающееся поле, т. е. по часовой стрелке.


Рис. 255. Электромагнитные силы, действующие на проводники ротора: а — при отсутствии индуктивности, б — при наличии индуктивности

Рассмотрим второй случай, когда индуктивность обмотки ротора относительно велика. В этом случае сдвиг фаз между током ротора I2 и э.д.с. ротора будет также значительным. На рис. 255, б магнитное поле статора асинхронного двигателя по-прежнему показано в виде вращающихся по направлению часовой стрелки полюсов N и S. Направление индуктированной в обмотке ротора э.д.с. остается таким же, как и на рис. 255, а, но вследствие запаздывания тока по фазе максимум тока I2 наступает позднее, чем максимум э.д.с.

На рис. 255 показано направление индуктированных токов в отдельных проводниках ротора в рассматриваемый момент времени, а также направления отдельных электромагнитных сил, действующих на проводники. Если Ψ2 = 0, то все электромагнитные силы будут действовать согласованно. При большем Ψ2 часть электромагнитных сил создают вращающий момент, направленный по часовой стрелке, а остальные силы — против часовой стрелки.

Магнитный поток Φ не зависит от скорости вращения ротора n. Следовательно, вращающий момент М пропорционален только активной составляющей тока ротора I2 cos Ψ2. Индуктивное сопротивление ротора Х2 = 2πfL2, а следовательно, и величина cos Ψ2 зависят от частоты тока ротора f2 и поэтому с изменением нагрузки на валу ротора изменяется не только величина тока I2, но и величина cos Ψ2. Таким образом, изменение вращающего момента, развиваемого двигателем, с изменением скорости вращения (и скольжения) определяется одновременно как изменением тока I2, так и изменением cos Ψ2.

На основании математического анализа и экспериментального исследования можно построить график зависимости вращающего момента асинхронного двигателя М от скольжения S (рис. 256). Так как каждому значению S соответствует определенное значение n = n (1 — S), то указанный график можно представить и как зависимость вращающего момента от скорости n. Зависимость между вращающим моментом М и скольжением S называется механической характеристикой двигателя (рис. 256).


Рис. 256. Механические характеристики асинхронного двигателя

На кривой А видно, что в начальный момент пуска, когда S = 1 и n = 0, вращающий пусковой момент двигателя относительно невелик. Это объясняется тем, что в момент пуска частота тока в обмотке ротора наибольшая и индуктивное сопротивление обмотки велико. Вследствие этого cos Ψ2 имеет малое значение (около 0,1-0,2). Поэтому, несмотря на большую величину пускового тока, пусковой вращающий момент будет наибольшим. По мере разгона двигателя скольжение уменьшается.

При некотором скольжении S1, называемом критическим, вращающий момент двигателя будет иметь максимальное значение. При дальнейшем уменьшении скольжения (или, иначе говоря, при дальнейшем увеличении скорости вращения двигателя) вращающий момент будет быстро уменьшаться и при скольжении S = 0 момент двигателя будет равен нулю. Этот режим соответствует идеальному холостому ходу, когда двигатель не нагружен, а механическими потерями (на трение) можно пренебречь.

Пусковой момент можно увеличить, если в момент пуска уменьшить сдвиг фаз между током и э.д.с. ротора. Если увеличить активное сопротивление цепи ротора, то угол Ψ2 уменьшится, что приведет к тому, что cos Ψ2 и вращающий момент двигателя станут больше.

Этим пользуются на практике для увеличения пускового вращающего момента двигателя. В момент пуска в цепь ротора вводят активное сопротивление (пусковой реостат), которое затем выводят по мере разгона двигателя.

Увеличение пускового момента приводит к тому, что максимальный вращающий момент двигателя получается при большем скольжении (точка S2 кривой В на рис. 256). Путем увеличения активного сопротивления цепи ротора при пуске можно добиться того, что максимальный вращающий момент будет в момент пуска (S = 1 кривой С).

Читайте также:  Что такое пилоны двигателя

Вращающий момент, развиваемый асинхронным двигателем, как указывалось, зависит от величины магнитного потека Φ. При снижении приложенного напряжения U1 уменьшается магнитный поток Φ, а следовательно, и вращающий момент, развиваемый двигателем при данной скорости вращения.

Теория и практика показывают, что вращающий момент асинхронного двигателя пропорционален квадрату напряжения, поэтому даже небольшое уменьшение напряжения сети сопровождается резким уменьшением момента.

Кривая А называется естественной механической характеристикой, а кривые В и С — реостатными механическими характеристиками асинхронного двигателя.

Работе двигателя с номинальной нагрузкой соответствует точка N на кривой A.

При скольжении Sн двигатель развивает номинальный момент Mн.

Ранее было указано, что путем увеличения активного сопротивления цепи роторной обмотки можно увеличить вращающий момент двигателя. Можно было бы сделать роторную обмотку большего сопротивления, но это вызвало бы значительный нагрев обмотки и уменьшение к.п.д. двигателя. Для улучшения пусковых характеристик асинхронных двигателей с короткозамкнутым ротором применяют двигатели с двумя короткозамкнутыми обмотками на роторе и двигатели с глубоким пазом.

Двигатель с двумя клетками (короткозамкнутыми обмотками) был предложен Доливо-Добровольским. На роторе такого двигателя помещают две клетки (рис. 257): одну — пусковую, имеющую большое активное сопротивление и малое индуктивное сопротивление, и другую — рабочую, обладающую наоборот, малым активным сопротивлением и большим индуктивным сопротивлением.


Рис. 257. Двуклеточный ротор: а — общий вид ротора с частичным разрезом, б — разрез паза; 1 — нижняя рабочая клетка, 2 — верхняя пусковая клетка

Стержни пусковой клетки изготовляют обычно из латуни. Материалом рабочей клетки служит медь. Сечение рабочей клетки делается больше сечения пусковой клетки. В результате подбора материала и сечения клеток активное сопротивление пусковой клетки получается в четыре — пять раз больше сопротивления рабочей клетки.

Как видно на рис. 257, б, между стержнями пусковой и рабочей обмоток имеется узкая щель, размеры которой определяют индуктивность нижней рабочей клетки. Рассмотрим работу двуклеточного двигателя.

Индуктивность рабочей клетки больше, так как она сцеплена с большим числом магнитных линий.

В момент пуска двигателя, когда частота токов ротора равна частоте сети, индуктивное сопротивление этой клетки особенно велико. Благодаря этому сдвиг фаз между током рабочей клетки и э.д.с., индуктированной в ней, будет большим, а момент вращения, создаваемый клеткой, — малым. Ввиду большого активного сопротивления и малой индуктивности верхней пусковой клетки ток и э.д.с., индуктированные в ней, будут незначительно сдвинуты по фазе, и вращающий момент, развиваемый пусковой клеткой, будет большим. Следовательно, при пуске вращающий момент двигателя получается преимущественно за счет пусковой клетки.

С увеличением скорости двигателя частота токов ротора уменьшается, индуктивное сопротивление клеток оказывает на работу двигателя все меньшее влияние и поэтому распределение токов в клетках определяется только их активным сопротивлением. Но, как было указано выше, активное сопротивление рабочей клетки в несколько раз меньше сопротивления пусковой клетки. Поэтому при нормальной работе двигателя большая часть тока проходит по рабочей клетке и вращающий момент получается преимущественно за счет рабочей клетки.

На рис. 258 показана зависимость вращающего момента двигателя с двуклеточным ротором от величины скольжения. На диаграмме кривая 1 показывает изменение момента, создаваемого пусковой обмоткой, кривая 2 — изменение момента, создаваемого рабочей обмоткой. Сумма мгновенных значений моментов двух обмоток дает кривую М момента двуклеточного двигателя.


Рис. 258. Кривые моментов двигателя с двуклеточным ротором

Более простым в изготовлении является ротор, у которого обе клетки заливают алюминием. На рис. 259 показаны внешний вид и частичный разрез ротора с двойной литой алюминиевой клеткой.


Рис. 259. Ротор с двойной алюминиевой клеткой

Двуклеточный двигатель дороже асинхронного двигателя с короткозамкнутым ротором обычной конструкции на 20-30%. Наши заводы изготовляют двуклеточные двигатели от 5 до 2000 квт.

Наряду с двуклеточным двигателем применяются двигатели с глубоким пазом (рис. 260). Отношение длины паза к ширине берется в пределах 10-12. Нижняя часть паза сцеплена с большим числом магнитных линий, чем верхняя часть паза. Вследствие этого индуктивное сопротивление нижней части паза больше, чем верхней, в особенности в момент пуска. Это приводит к вытеснению тока ротора в верхнюю часть стержней обмотки. Плотность тока в верхних слоях стержня увеличивается, что равносильно уменьшению сечения стержней и увеличению активного сопротивления обмотки. Это, как известно, приводит к увеличению вращающего момента двигателя. Кроме того, увеличение индуктивного и активного сопротивления обмотки ротора вызывает уменьшение пускового тока. С увеличением скорости двигатель приобретает свойства, соответствующие его обычной конструкции.


Рис. 260. Ротор с глубоким пазом: а — общий вид с частичным разрезом, б — разрез паза

В табл. 11 приведены пусковые характеристики двигателя с короткозамкнутым ротором нормального исполнения, двуклеточного двигателя и двигателя с глубоким пазом. Пусковые свойства даются в виде отношения пускового тока Iп к номинальному току Iн и в виде отношения пускового момента Мn к номинальному моменту Мн.


Таблица 11. Пусковые характеристики двигателей с короткозамкнутым ротором

Источник

Adblock
detector