Как влияет форма камеры сгорания на работу двигателя

Зависимость формы камеры сгорания от качества сгорания топлива

Для обеспечения наиболее полного и равномерного заполнения объёма камеры сгорания микрокаплями топлива, образовавшимися при распыливании, форма камеры сгорания должна быть согласованна с числом, диаметром и направлением сопловых каналов форсунки.

Чтобы обеспечивать качественное образование смеси топлива и воздуха в дизелях, работающих в разных условиях, на различных видах топлива, с разными диаметрами цилиндров применяют объёмный, пленочный, объёмно-плёночный, предкамерный и вихрекамерный способы смесеобразования.

Камеры сгорания по конструкции бывают неразделённые и разделённые. В неразделённых камерах применяются объёмный, плёночный и объёмно-плёночный способы смесеобразования.

В основе принципа объёмного смесеобразования – впрыскивание топлива через многоструйный распылитель форсунки непосредственно в камеру сгорания и равномерное распыление микрочастиц топлива по всему её объёму.

При полусферической форме камеры сгорания основная масса воздуха сосредоточена в районе форсунки, что позволяет уменьшить длину струи и увеличить угол его рассеивания. В данном случае угол распыливания βменьше, чем в остальных камерах сгорания. При полусферической форме камеры исключено попадание частичек топлива на охлаждаемые поверхности. Вместе с тем при такой форме камеры хуже условия для отвода теплоты от днища поршня: тепловой поток должен направляться в низ, тогда как края днища направлены в верх. существуют места, как, например, в центре камеры, не охватываемые струями топлива. В связи с указанным при полусферической формы камеры особенно необходимо вихревое движение воздуха.

В двухтактных двигателях форма днища поршня затрудняет продувку цилиндра. Поэтому более эффективную камеру сгорания создают в двухтактных двигателях в днище крышки цилиндра при плоском днище поршня.

Наиболее соответствует формам струй топлива камера сгорания Гессельмана. В отличие от рассмотренной камеры основная масса воздуха сосредотачивается в дали от форсунки. Чтобы частички топлива не падали на охлаждаемые стенки цилиндра, по краям поршня предусматривают высокие бурты. Условия для качественного смесеобразования при такой камере лучше. Однако бурты и выступающая средняя часть днища поршня перегреваются, из-за чего закоксовываются верхние уплотнительные кольца.

Вихревое движение воздуха в камере сгорания создаётся в процессе наполнения цилиндра: воздух в следствии того, что выпускной клапан смещён в сторону от оси цилиндра, завихряется. При ходе сжатия появятся вихревые потоки воздуха, обусловленные неплоской формой днища поршня или крышки цилиндра. В этом отношении камера более удачна, чем ранее рассмотренные камеры. При впрыскивании топлива вихревое движение воздуха возникает из-за поглощения им кинетической энергии струй топлива.

Однако все перечисленные вихри – слабы и не организованны. Сильный организованный вихрь в двухтактных двигателях можно создать, если соответствующим образом направить продувочные окна. В четырёхтактных двигателях, чтобы создать круговой вихрь в поступающем в цилиндр воздухе, иногда выполняют криволинейным канал крышки цилиндра, по которому поступает воздух к впускному клапану.

Объёмный способ смесеобразования в неразделённых камерах практически у всех типов двигателей с диаметром цилиндра более 150 мм. Основные достоинства этого способа – простая конструкция камер сгорания, высокая экономичность двигателя при умеренных степенях сжатия (ε=12÷17), хорошие пусковые качества, компактность элементов системы охлаждения. Его недостатки – необходимо обеспечивать высокие значения коэффициента избытка воздуха (α=1.8÷2.2) для достижения полного сгорания топлива и высокие давления впрыскивания топлива. В связи с этим требования к качеству топливной аппаратуры повышаются. Поэтому в двигателях с небольшим объёмом цилиндров (менее 150 мм) применяют другие способы смесеобразования.

Стремление улучшить процесс смесеобразования привело к созданию так называемых полуразделённых камер сгорания, расположенных в головке поршня.

Читайте также:  Технические характеристики инжектора двигателя ваз 21099

Для плёночного смесеобразования необходимо значительную часть (90-95%) впрыскиваемой дозы топлива подавать на стенки камеры сгорания под небольшим углом, обеспечивающим растекание топлива тонким слоем, а около стенки организовать вихри путём перетекания воздуха из пространства над поршнем в камеру внутри самого поршня при ходе сжатия. Интенсивность вихрей будет увеличиваться при приближение поршня к в. м. т. Массивные не охлаждаемые стенки камеры способствуют быстрому воспламенению паров топлива.

Чисто плёночное смесеобразование явилось этапом на пути совершенствования способов образования горючих смесей. Из-за недостатков двигателя (сложность доводки рабочего процесса, низкие пусковые качества двигателя, дымность при работе на малых нагрузках) этот способ применяют ограниченно, но он вошёл как составная часть в объёмно-плёночный способ смесеобразования. Этот способ является одним из наиболее совершенных для высокооборотных дизелей с небольшими диаметрами цилиндров. Камера сгорания размещена так же, как и при плёночном способе, в поршне, но форсунка расположена в центре крышки цилиндра по его оси, а не под углом.

Топливные струи (40-60% всей дозы), направляемые на кромку горловины, растекаются тонким слоем по стенкам камеры и испаряются. Пары перемешиваются с воздухом благодаря интенсивному вихреобразованию вследствие вытеснения заряда из надпоршневого пространства при подходе поршня к в. м. т.

У дизелей с объёмно-плёночным смесеобразованием умеренные значения максимального давления цикла [p =(6÷7.5) МПа], сравнительно низкий удельный расход топлива [gₑ=(217÷245) г/(кВт·ч)]. Достигается почти полное сгорание топлива при небольшом значении коэффициента избытка воздуха (α≈1.5).

Объёмно-плёночный способ смесеобразования применяется в дизелях с диаметром цилиндров 70-300 мм.

Основной недостаток рассмотренных неразделённых камер – неполное сгорание форм камеры сгорания и размеров струй распылённого топлива. Кроме того, из-за влияния качества топлива на условия смесеобразования ограничено использование в таких двигателях топлив различных марок. В этом отношении зарекомендовали себя положительно так называемые разделённые камеры, состоящие из двух полостей: надпоршневой и соединённой с ней одним или несколькими каналами отделенной полости в крышке. На речном флоте широко распространены вихревые камеры – разновидность многокамерного смесеобразования. При этом способе в крышке цилиндра расположена вихревая камера сферической формы. Она соединена каналом с пространством над поршнем. К приходу поршня в в. м. т. В ней находится до70-80% всего объёма воздуха, остальные 20-30% в канале и в надпоршневом пространстве. При ходе сжатия воздух из цилиндра по каналу перетекает в вихревую камеру, где появляются закономерные круговые вихри.

Форсунка впрыскивает топливо внутрь вихревой камеры, где и сгорает его основная часть. В последующем, по мере перетекания газов из вихревой камеры в цилиндр, происходит догорание топлива за счёт участия воздуха, оставшегося в канале и надпоршневом пространстве.

Ввиду наличия интенсивных вихрей воздух, заключённый в вихревой камере, обладает значительным запасом кинетической энергии. Это позволяет получить хорошее смесеобразование при малых давлениях впрыскиваемого топлива (примерно 12-24 МПа) и при одноструйном распылителе форсунки.

Вихревые камеры часто изготавливают с вставной горловиной, являющейся тепловым аккумулятором: нагреваясь при горении, она отдаёт теплоту воздуху в процессе сжатия, благодаря чему уменьшается период задержки воспламенения, особенно при малых нагрузках.

Упрощение конструкции топливной аппаратуры, связанное с относительно низким давлением впрыскивания – большое преимущество вихрекамерных дизелей. Кроме того, вследствие хорошего перемешивания воздуха с топливом в них лучше используется воздух для сгорания, что позволяет при тех же размерах цилиндра получить мощность больше, чем в двигателях с однокамерным смесеобразованием. Двигатели с вихревыми камерами менее чувствительны к качеству топлива, но и менее экономичны:

̶ на перетекание воздуха в вихревую камеру и газов из неё затрачивается часть внутренней энергии газа, которая могла быть полезно использована;

Читайте также:  С какого года в октавии новый двигатель

̶ конструкция крышки цилиндра сложнее;

̶ вследствие разделения объёма камеры сгорания на две части увеличивается поверхность, приходящаяся на единица объёма воздуха. Из-за повышенного в связи с этим отвода теплоты через стенки снижается температура сжимаемого воздуха, в результате труднее запуск холодного двигателя. А поэтому в вихрекамерных двигателях предусматривают специальную запальную спираль, устанавливаемую под форсункой.

На ряде высокооборотных форсированных дизелей зарубежных фирм с диаметром цилиндра 160-185 мм достаточно эффективен предкамерный способ смесеобразования. Камера сгорания при таком способе состоит из предкамеры (форкамеры), расположенной в крышке цилиндра, и основной камеры, заключённой между днищами поршня, крышками и стенками цилиндровой втулки. С основной камерой предкамера соединено отверстиями, суммарное проходное сечение которых составляет 0.5-1% площади поршня. Объём предкамеры составляет 20-40% объёма камеры сжатия. Всё это обеспечивает максимальную разность давлений в конце сжатия в предкамере и надпоршневом пространстве (0.3-0.5 МПа).

При истечении из предкамеры пары топлива интенсивно перемешиваются с зарядом основной камеры сгорания, в результате чего обеспечивается наиболее полное сгорание. Дизели с предкамерами менее чувствительны к качеству топлива и условиям работы, чем вихрекамерные.

Основные недостатки предкамерных двигателей – повышенные потери теплоты из-за увеличенной поверхности камеры сгорания; энергетические потери на перемешивание паров топлива, воздуха, газов через отверстия; плохие пусковые качества (необходимо запальное устройство); низкая экономичность [удельный расход топлива 270 г/(кВт·ч)].

На речном флоте предкамерные двигатели не применяют, на морском – ограниченно в качестве вспомогательных.

Источник

Элементы газотурбинного двигателя. Камера сгорания.

Камеры сгорания ГТД предназначаются для подвода теплоты к рабочему телу в двигателе за счет преобразования химической энергии топлива, запасенного на борту летательного аппарата, в тепловую при его сгорании с участием кислорода, содержащегося в воздухе. Двигатей ли для сверхзвуковых самолетов имеют обычно две камеры сгорания:

основную (перед турбиной) и форсажную (перед соплом), включаемую для увеличения тяги Топливом для современных авиационных ГТД служит керосин.

Существует много марок авиационных керосинов, но все они, являясь продуктами переработки нефти, представляют собой смесь углеводородов, в которой содержится 84…86 % (по массе) углерода (С), 14…16 % водорода (Н) и некоторое (очень малое) количество других веществ.

Но поскольку разведанных запасов нефти хватит, по ориентировочным оценкам только на 40…80 лет‚ в настоящее время ведутся интенсивные исследования по применению в качестве топлива для авиации так называемых криогенных (сжиженных при низких температурах) топлив — жидкого метана (СН4), сжиженного природного газа (СПГ), состоящего примерно на 90 % (80.95% в разных месторождениях) из метана и жидкого водорода (Н2).

По оценкам специалистов запасов природного газа и соответственно метана хватит еще более чем на 100 лет‚ а запасы сырья для получения водорода в природе (из воды) практически не ограничены,

Криогенные топлива имеют еще одно преимущество — значительно больший, чем у керосина, хладоресурс, т‚е‚ возможность эффективного охлаждения (с их использованием) элементов конструкции двигателя и летательного аппарата на больших сверхзвуковых и гиперзвуковых скоростях полёта. При этом, благодаря очень быстрой испаряемоети при случайном попадании из баков в окружаюшую среду, их пожароопасность по некоторым оценкам может быть ниже, чем у керосина.

Типы основных камер сгорания и организация процесса горения в них

Основные камеры сгорания авиационных ГТД могут иметь разнообразные формы проточной части И различное конструктивное выполнение. Применяются практически камеры сгорания трех основных типов (рис. 9.3):

а — трубчатые (индивидуальные),

Трубчатая камера сгорания состоит из жаровой трубы, внутри которой организуется процесс горения, и корпуса (кожуха) 2. На двигателях обычно устанавливалось несколько таких камер. В современных авиационных ГТД трубчатые камеры сгорания практически не используются.

Читайте также:  Схема двигателя кия пиканто

В трубчато-кольцевой камере все жаровые трубы заключены в общий корпус, имеющий внутреннюю и наружную поверхности, охватывающие вал двигателя. В кольцевой камере сгорания жаровая труба имеет в сечении форму кольца, также охватывающего вал двигателя.

Важная особенность этих камер состоит в том, что скорость потока воздуха или топливо-воздушной смеси в них (выбираемая с учетом требований К габаритным размерам двигателя) существенно превышает скорость распространения пламени при турбулентном диффузионном гореНИИ. И, если не принять специальных мер, пламя будет унесено потоком за пределы камеры сгорания

Поэтому организация процесса горения топлива в основных камерах ГТД основывается на следующих двух принципах, позволяющих обеспечить устойчивое горение топлива при больших значениях ос И высоких скоростях движения потока в них:

1. Разделение всего потока воздуха на две части , из которых только одна часть (обычно меньшая) подается непосредственно в зону горения (где за счет этого создается необходимый для устойчивого горения состав смеси). А другая часть направляется в обход зоны горения (охлаждая снаружи жаровую трубу) в так называемую зону смешения (перед турбиной), где смешивается с продуктами сгорания, понижая в нужной мере их температуру;

2. Стабилизация пламени в зоне горения путем создания в ней зоны обратных токов, заполненной горячими продуктами сгорания, непрерывно поджигающими свежую горючую смесь.

Конкретные формы реализации этих мероприятий могут быть различными. На рис. 9.4 показана схема одного из вариантов трубчато-кольцевой камеры сгорания. Камера состоит из жаровой трубы 1 и корпуса 2. В передней части жаровой трубы, которую называют фронтовым устройством, размещаются форсунка 3 для подачи топлива и лопаточный завихритель 5. Для уменьшения скорости воздуха в камере на входе в нее (за компрессором) выполняется диффузор 4, благодаря которому скорость воздуха перед фронтовым устройством обычно не превышает 50 м/с.

Подвод первичного и вторичного воздуха в жаровую трубу должен быть организован так, чтобы в зоне горения создавалась нужная структура потока. Эта структура должна обеспечить хорошее смешение топлива с воздухом, создание нужных полей концентраций топлива и наличие мощных обратных токов, обеспечивающих надежное воспламенение свежей смеси на всех режимах работы камеры.

Структура потока в передней части жаровой трубы камеры сгорания с так называемым лопаточным завихрителем показана схематично на рис. 9.5. Воздух поступает сюда через завихритель лопатки которого закручивают поток (подобно лопаткам входного направляющего аппарата компрессора). Далее воздух движется вдоль поверхности жаровой трубы в виде конической вихревой струи

Вихревое движения воздуха приводит к понижению давления в области за завихрителем, вследствие чего в эту область устремляемтся газ из расположенных дальше от фронтового устройства участков жаровой трубы.

В результате здесь возникает зона обратных токов, граница которой показана на рисунке линией 5. Там же показаны эпюры распределения осевых составляющих скорости воздуха (газа) Са.

Топливо-воздушная смесь, образовавшаяся за фронтовым устройством, при запуске двигателя поджигается огненной струей, создаваемой пусковым воспламенителем 6 (см. рис. 9.4). Но в последующем горячие продукты сгорания вовлекаются в зону обратных токов и обеспечивают непрерывное поджигание свежей смеси. Кроме того, горячие газы, циркулирующие в этой зоне, являются источником теплоты, необходимой для быстрого испарения топлива.

Наряду с рассмотренной схемой камеры сгорания с завихрителем и с одной форсункой в каждой жаровой трубе (или с одним рядом форсунок в кольцевой камере) могут использоваться и другие схемы основных камер сгорания — с несколькими форсунками (несколькими рядами форсунок), с другими способами создания зоны обратных токов и т.д. Но общие принципы организации рабочего процесса в них остаются такими же.

Источник

Adblock
detector