Как увеличить мощность двигателя заз 968

Инженер — системотехник

В течении многих десятилетий отечественным производителем, Запорожским автомобильным заводом, выпускался в различных модификациях автомобиль «Запорожец». За долгое время накопился большой парк этих автомобилей и особенно модели ЗАЗ 968 и его модификаций. Машина показала себя неприхотливой, обладающей высокой проходимостью и неплохой нагрузочной способностью. Много автомобилей ЗАЗ являются незаменимыми помощниками в условиях села и города, сочетая в себе низкую стоимость и простоту в обслуживании.

Однако при наличии многих положительных качеств автомобиль ЗАЗ 968 имеет ряд конструктивных особенностей, которые можно назвать его недостатками. Одним из самых важных недостатков является малая мощность силового агрегата – двигателя МеМЗ 968ГЭ. Малая мощность сочетается с высоким расходом топлива, реально достигающим 10 литров на 100 километров.

В нашей семье до недавнего времени был автомобиль ЗАЗ 968М и во время проведения ремонта я решил внимательно изучить двигатель и попытаться внести такие изменения в его конструкцию, которые бы позволили увеличить мощность с одновременным снижением расхода топлива.

Недостатки двигателя МеМЗ 968ГЭ и

возможные пути их устранения.

Любые попытки внести изменения в топливную систему с целью экономии топлива приводили к положительному результату только вместе со снижением динамических характеристик автомобиля. Однако в наших условиях горной местности уменьшение мощности в целях экономии топлива приводит к другому затруднению – перегреву на затяжных подъемах. Воздушное охлаждение не позволяет эффективно охлаждать цилиндры двигателя при работе с очень высокими нагрузками. Требовалось вносить изменения в конструкцию двигателя, что стало возможным при его капитальном ремонте.

Внимательно изучив принципы работы двигателей внутреннего сгорания, я понял, что мощность двигателя можно повысить несколькими путями:

— увеличением объема цилиндров и количества подаваемого топлива;

— увеличением длины хода поршня и соответствующим увеличением степени сжатия топливно – воздушной смеси в цилиндрах;

— увеличением давления сжатия топливно – воздушной смеси в цилиндрах каким – либо другим способом.

Первый вариант мной не рассматривался, так так он приводит к еще большему расходу топлива.

Второй вариант оказался трудно выполнимым, так как требует изменения конструкции коленчатого вала и удлинения шатунов. Такую работу возможно сделать только в заводских условиях и потому я не разрабатывал этот вариант.

Разрабатывая третий вариант, я пришел к выводу, что увеличить давление сжатия рабочей смеси в цилиндрах можно двумя способами – уменьшить при сжатии утечку смеси, а при рабочем ходе уменьшить прорыв выхлопных газов в картер двигателя между корпусом цилиндра и корпусом поршня (первый способ), или принудительно нагнетать воздух в цилиндры для создания давления в них еще на стадии впуска (второй способ).

Второй способ достаточно труден в реализации и требует тщательной разработки. В настоящее время я веду разработку конструкции нагнетателя воздуха с ременным приводом, однако более простым, хотя и менее эффективным, является первый способ. Рассмотрим, что нам даст уплотнение зазора между поршнем и стенками цилиндра при работе четырехтактного карбюраторного двигателя, каким является двигатель МеМЗ968ГЭ.

При проектировании и расчете двигателя внутреннего сгорания величина давления в цилиндре при сжатии рабочей смеси (так называемая компрессия ) имеет важнейшее значение и оказывает прямое влияние на эффективную мощность двигателя.

Начнем с цикла впуска. Формула расчета давления в конце цикла впуска имеет вид:

где Р– плотность заряда (давление в цилиндре) на впуске, D Ра — потери воздуха из – за сопротивления впускных каналов и неплотности зазора между поршнем и цилиндром. Здесь мы видим, что уплотнение зазора уменьшает потери при впуске за счет увеличения разрежения в цилиндре при впуске.

Соответственно мы получаем давление в конце сжатия в соответствии с формулой:

где Ра— давление в конце цикла впуска, e — степень сжатия ( в нашем случае величина неизменная, зависящая от соотношения длины хода поршня и величины рабочей камеры), n – коэффициент политропности процесса ( в нашем случае не изменяющий значения ).

Из него мы можем получить среднее эффективное давление рабочего цикла:

Читайте также:  Троит двигатель это опасно

где pi – индикаторное давление рабочего цикла двигателя, прямо пропорциональное давлению при сжатии ( pi = Pc / e — 1 ) , pm – давление механических потерь на преодоление сопротивления кривошипно – шатунного механизма, сил инерции, возникающих при работе двигателя и сопротивления внешних устройств (генератора, топливного насоса и т.д.), а так же потери при прорыве газов через неплотности газораспределительных клапанов и неплотность между стенками цилиндра и поршнем.

Эффективная мощность двигателя рассчитывается по формуле:

Из нее мы видим, что мощность прямо пропорциональна среднему эффективному давлению рабочего цикла.

При дополнительном уплотнении зазора между стенками цилиндра и поршнем мы получаем увеличение заряда при впуске, соответственно получая более высокое давление при сжатии. Это дает нам более высокое среднее эффективное давление рабочего цикла, что приводит к увеличению мощности двигателя.

В автомобильном двигателе роль уплотнителя между стенками цилиндра и поршнем выполняют компрессионные поршневые кольца. В двигателе МеМЗ 968ГЭ их два – верхнее и нижнее. Поршневая группа обеспечивает такую степень сжатия, которая соответствует давлению компрессии в цилиндрах 9 кг./ см 2 при объеме цилиндров 1198 см 3 . Автомобильные двигатели ВАЗ, АЗЛК, имеющие близкие по значению объемы цилиндров (ВАЗ 2101 – 1200 см 3 ), развивают давление компрессии в цилиндрах 12 кг./см 2 . Такая существенная разница получается за счет больших тепловых зазоров между поршнем и цилиндром в двигателе МеМЗ 968ГЭ из – за малоэффективного воздушного охлаждения.

При рассмотрении поршневой группы, снятой для ремонта, я обратил внимание на большое расстояние между донышком цилиндра и кольцевой канавкой для установки верхнего поршневого кольца ( рис. 1). Я предполагаю,

что конструкторы двигателя увеличили это расстояние по

сравнению с поршнями других двигателей с целью увеличения

работе на низкооктановом бензине. При работе на таком топливе (А – 76) и небольшой

мощности двигателя возникает опасность детонации, которая может разрушить перегородку между донышком поршня и канавкой поршневого кольца. Если использовать топлива с более высоким октановым числом (А – 80, АИ – 90), которых не было на момент разработки двигателя и они не могли быть учтены конструкторами, то мы можем исключить возможность возникновения детонации и использовать дополнительный запас прочности поршня.

Предложения по модернизации двигателя МеМЗ 968ГЭ.

Для улучшения характеристик двигателя, повышения его мощности и уменьшения потребления топлива я предлагаю установить дополнительное компрессионное поршневое кольцо на поршне двигателя. Кольцо предлагаю разместить в кольцевой канавке, проточенной в поршне на расстоянии 3,95 мм. от донышка, шириной 1,8 мм. и глубиной 3,3 мм ( рис. 2 ). Ширина проточенной кольцевой канавки соответствует ширине канавки для установки верхнего компрессионного поршневого кольца. При этом толщина перегородки между

ОСНОВНЫЕ РАЗМЕРЫ ПОРШНЯ

донышком поршня и канавкой составит 3 мм., что соответствует толщине перегородок между кольцами.

Практическая установка дополнительного компрессионного поршневого кольца на двигателе МеМЗ 968ГЭ автомобиля ЗАЗ 968М позволила определить, что давление компрессии в цилиндрах увеличилось до 11 кг./см 2 , мощность двигателя увеличилась с 40 л. с. до 45 л. с. Улучшились тяговые и динамические характеристики – время набора скорости до 100 км./ч. уменьшилось на 6 секунд или на 17% ( см. приложение № 1). Расход топлива уменьшился с 8,5 ( по паспорту ) до 7,74 литров на 100 км. или на 9% за счет более полного сгорания смеси ( см. приложение № 2).

Однако при установке дополнительного кольца мы увеличиваем площадь трущихся поверхностей, что увеличивает нагрев цилиндров и поршней. Так же вызывает нагрев и более высокое давление смеси в цилиндрах. При нагреве двигателя МеМЗ968ГЭ до температуры 105 0 С начинает теряться мощность и возникает необходимость более эффективного охлаждения. Проблему снятия теплоизбытков я предлагаю решить следующим способом — можно установить второй вентилятор на вал генератора. Из стального листа толщиной 1 мм надо вырезать круг диаметром 190 мм с отверстием в центре диаметром 16 мм. Разделив круг на 16 секторов, нужно сделать надрезы по радиусам на глубину 50 мм. Получившиеся лопасти следует изогнуть так же, как у основного вентилятора. С вала генератора надо отвернуть гайку, снять пружинную шайбу и установить на вал крыльчатку, надежно закрепив ее теми же шайбами и гайкой ( см. рис. 3 ). Дополнительный вентилятор увеличит количество подаваемого для охлаждения воздуха и позволить сделать более эффективным охлаждение. Рекомендую применять в модернизированном двигателе гильзы цилиндров с аллюминиевым оребрением, имеющем более высокую теплоотдачу, чем гильзы с чугунным оребрением.

Читайте также:  Почему на горячую не заводится газель двигатель 406

Дополнительно рекомендую использование анамегатора масла и модификатора топлива киевской фирмы «Адиос». Выпускаемый этой фирмой анамегатор масла «Gold Ozerol МП – 8» модифицирует моторное масло так, что в двигателе вместо пар трения за счет поверхностно – активной пленки образуются

АВТОМОБИЛЬНОГО ДВИГАТЕЛЯ МеМЗ968ГЭ

пары качения, что значительно уменьшает трение и нагрев двигателя. При этом значительно увеличевается срок службы моторного масла. Уменьшение трения в кривошипно – шатунном механизме и механизме газораспределения позволит снизить давление механических потерь и увеличить мощность двигателя. Использование модификатора топлива «Adizol» так же позволяет получить поверхностно – активную пленку на стенках цилиндров, что уменьшает трение поршневых колец и нагрев. Практическое применение этих двух веществ на двигателе показало экономическую выгодность — при стоимости анамегатора масла 16 грн. 50 коп. срок службы масла увеличивается при первой заливке с 7000 км. до 15000 км., а при второй заливке – с 7000 км. до 30000 км., при стоимости модификатора топлива 4 копейки на литр топлива получается реальная экономия до 9% или около 11 копеек на литр топлива. Так же заметно уменьшается износ и нагрев компонентов двигателя.

Установка дополнительного кольца производилась на трех двигателях. Двигатель автомобиля ЗАЗ 968М выпуска 1985 года, эксплуатировавшийся в условиях Ялты с дополнительным поршневым кольцом, на момент выхода из строя шатуна имел пробег 73 000 километров при норме пробега до капитального ремонта 60 000 километров. Представляемый поршень был установлен на этом двигателе и мы можем убедиться в том, что его износ не превышает нормы, а перегородка между донышком поршня и канавкой дополнительного поршневого кольца не имеет следов прогара и разрушения.

Двигатель автомобиля ЗАЗ 968М выпуска 1990 года, эксплуатировавшийся в условиях Фороса с дополнительным поршневым кольцом, на момент выхода из строя направляющей впускного клапана механизма газораспределения имел пробег 45 000 километров. При обследовании снятой поршневой группы не было обнаружено каких – либо деформаций или неисправностей.

На двигателе автомобиля ЗАЗ968А выпуска 1980 года, эксплуатировавшегося в условиях Ялты с дополнительным поршневым кольцом после 55 000 километров пробега была произведена замена поршневых колец. Каких – либо следов разрушения или повышенного износа поршневой группы обнаружено не было.

Установка дополнительного компрессионного поршневого кольца на двигателе МеМЗ 968ГЭ автомобиля ЗАЗ 968М позволила получить увеличение мощности двигателя на 12,5 % и уменьшение времени разгона с места до 100 км./час на 17% . Расход топлива при этом уменьшился на 9 %. Улучшились тяговые и разгонные характеристики автомобиля. Практическая эксплуатация модернизированной поршневой группы на двигателях трех автомобилей показала, что модернизация не приводит к снижению надежности шатунно – поршневой группы.

Определение тяговых характеристик двигателя МеМЗ968ГЭ.

Определение тяговых качеств производилось путем определения максимальной скорости автомобиля с двигателем, на котором была установлена модернизированная поршневая группа. Используемая методика рекомендуется заводом – изготовителем для определения тяговых характеристик двигателя и определения его мощности. Максимальная скорость определялась при движении на высшей передаче на мерном участке длиной 1 километр с хода. Замер производился после регулировки ходовой части, регулировки развала – схождения колес, регулировки токсичности выхлопа, предварительного разогрева двигателя до температуры +85 0 С, сухом дорожном покрытии, температуре воздуха + 20 0 С и отсутствии ветра, в автомобиле находились 2 человека. Время прохождения мерного участка фиксировалось путем включения секундомера при пересечении начальной отметки и отключения при пересечении конечной отметки. Замер производился за два заезда в обоих направлениях участка, оба замера производились непосредственно один за другим.

Скорость автомобиля определялась по формуле: V = 3600/T ( км. /час ), где

Т – время ( в секундах ) прохождения километрового мерного участка.2 За действительное значение максимальной скорости автомобиля было принято среднее арифметическое из величин скоростей, полученных в двух заездах.

Читайте также:  С какими двигателями выпускали ваз 2110

V = (128,6+130,9)/2 = 129,75 км. /час.

Завод – изготовитель для определения мощности двигателя дает следующие контрольные цифры максимальной скорости в зависимости от мощности:

· Двигатель МеМЗ968Э мощностью 30 л.с. – 118 км./час.

· Двигатель МеМЗ968ГЭ мощностью 40 л.с. – 123 км./час.

· Двигатель МеМЗ968БЭ мощностью 45 л.с. – 130 км./час.

По результатам замера максимальной скорости можно сделать вывод, что мощность двигателя в результате установки дополнительного компрессионного кольца увеличилась с 40 л. с. до 45 л. с. и прирост мощности составил 12,5%.

Для полноты оценки тяговых качеств произвели замер времени разгона от нуля до 100 км./час с последовательным переключением передач при тех же условиях, что и замеры максимальной скорости. Автомобиль разгонялся с места на первой передаче энергичным нажатием на педаль акселератора. Трогание с места плавное. Переключение передач производилось быстро и бесшумно при наивыгоднейших режимах. Замеры производились в двух направлениях участка, непосредственно один за другим.

Т1= 30 сек. Т2 = 28 сек. Т = (30+28)/2 = 29 сек.

Завод – изготовитель дает следующие контрольную цифру времени разгона до

100 км./час: для автомобиля ЗАЗ968М с двигателем МеМЗ 968ГЭ – 35 сек.

Уменьшение времени разгона составило 6 сек. или на 17%.

Определение контрольного расхода топлива двигателем МеМЗ968ГЭ.

Эксплуатационный расход бензина является одним из параметров, характеризующих общее техническое состояние двигателя. Величина эксплуатационного расхода бензина в большей степени зависит от дорожных и климатических условий, режима движения (скорость, нагрузка, дальность и частота поездок) и совершенства вождения автомобиля (квалификации водителя). В связи с этим нельзя с достаточной объективностью судить о техническом состоянии автомобиля по эксплуатационному расходу бензина, тем более по нему нельзя судить о техническом состоянии двигателя (так как на расход бензина существенно влияет состояние ходовой части автомобиля).

Объективным показателем технического состояния двигателя служит контрольный расход бензина.

Замер контрольного расхода заключается в определении расхода бензина (л/100 км) при скорости автомобиля 80 км/ч с технически исправной ходовой частью при соблюдении условий испытания, изложенных в приложении № 1.

Измерение выполнялся на участке дороги длиной 5 км, с постоянной скоростью, в двух противоположных направлениях движения по 2 раза в каждом направлении. При этом бензин в карбюратор подавался из специальных мерных колб. Замеры производились лишь после того, как полностью установился нормальный тепловой режим двигателя. Завод – изготовитель дает контрольную цифру контрольного расхода бензина для технически исправного автомобиля ЗАЗ968М с двигателем МеМЗ968ГЭ – 8,5 литров/ 100 км.

Мерным участком служил 5 – километровый отрезок дороги Бахчисарай — Симферополь с ровным профилем, сухим покрытием.

При проведении контрольных замеров были получены следующие результаты:

Средний арифметический контрольный расход на 5 километров после четырех замеров составил:

Контрольный расход топлива на 100 километров составил:

Из результатов замера контрольного расхода топлива следует, что после установки дополнительного компрессионного кольца на поршневой группе расход уменьшился на V пасп. — Vконтр = 8,5 – 7,74 = 0,76 л./100 км. или на 9%.

Список используемой литературы.

1. С. Фучаджи «Автомобиль ЗАЗ 968М, руководство по ремонту и

эксплуатации», Запорожье, 1995 г.

2. С. Шейнин «Автомобили «Запорожец», руководство по эксплуатации и

ремонту» , Киев,Проминь, 1971 г.

3. «Анамегаторы – ответы почти на все вопросы». Издание фирмы «Adioz»,

4. Колчин А. И. Демидов В. П. «Расчет автомобильных и тракторных

двигателей». Москва, Высшая школа, 1980г.

5. Артамонов М.Д., Морин М.М., Скворцов Г.А. «Основы теории и конструирования автотракторных двигателей. Конструирование и расчет автомобильных и тракторных двигателей». Москва, Высшая школа, 1978

6. «Двигатели внутреннего сгорания. Устройство и работа поршневых и комбинированных двигателей». /Под общ. ред. Орлина А.С., Круглова М.Г. – Москва, Машиностроение, 1990

2. Недостатки двигателя МеМЗ 968 и возможные

пути их устранения…………………………………………………..2

3. Предложения по модернизации двигателя МеМЗ 968……………5

· Приложение № 1 ( замер тяговых характеристик ) ………………12

· Приложение № 2 ( замер потребления топлива ) ………………. 13

6. Список используемой литературы………………………………. 14

Теги: Модернизация автомобильного двигателя МеМЗ 968ГЭ для увеличения мощности, улучшения тяговых характер. Другое Экономика отраслей

Источник

Adblock
detector