Как устроен ротор короткозамкнутого двигателя

Ротор асинхронного двигателя: устройство короткозамкнутого и фазного ротора

Внушительная мощность асинхронного электродвигателя, трансформирующего электричество в энергию вращения, создается не за счет каких-либо механических составляющих: для такого мощного вращения в его «начинке» используются только электромагниты.

Ротор асинхронного двигателя: конструкция

Ротор – вращающийся внутри статора (неподвижного компонента) элемент электродвигателя, вал которого соединен с деталями рабочих агрегатов, например, пил, турбин и помп. Шихтованный сердечник выполняется из отдельных пластин электротехнической стали с полузакрытыми или открытыми пазами.

Массивный ротор представляет собой цельный стальной цилиндр, помещенный внутрь статора, с напресованным на его поверхность сердечником.

Бесконтактная, не соединенная ни с какой внешней электрической цепью обмотка ротора, создает вращательный момент и бывает двух типов:

  • короткозамкнутая (короткозамкнутый ротор);
  • фазная (фазный ротор).

Короткозамкнутый ротор

Впаянные или залитые в поверхность сердечника и накоротко замкнутые с торцов двумя кольцами высокопроводящие медные (для машин большой мощности) или алюминиевые стержни (для машин меньшей мощности), играют роль электромагнитов с полюсами, обращенными к статору. Такая конструкция носит название «беличья клетка», данное ей русским электротехником М. О. Доливо-Добровольским.

Стержни обмотки не имеют какой-либо изоляции, так как напряжение в такой обмотке нулевое. Более часто используемый для стержней двигателей средней мощности, легко плавящийся алюминий, отличается малой плотностью и высокой электропроводностью. Для уменьшения высших гармоник электродвижущей силы (ЭДС) и исключения пульсации магнитного поля, стержни ротора имеют определенным образом рассчитанный угол наклона относительно оси вращения.

В двигателях малой мощности пазы сердечника, как правило, выполняют закрытыми: отделяющая ротор от воздушного зазора — стальная пластина позволяет дополнительно закрепить обмотки, но за счет некоторого увеличения их индуктивного сопротивления.

Фазный ротор

Характеризуется практически не отличающейся от обмотки статора трехфазной (в более общем случае — многофазной) уложенной в пазы сердечника обмоткой, концы которой соединены по схеме «звезда». Выводы обмоток присоединены к закрепленным на валу ротора контактным кольцам, к которым при пуске двигателя прижимаются и скользят неподвижные, соединенные с реостатом графитовые или металлографитовые щетки.

Для ограничения возникающих вихревых токов обычно бывает достаточно нанесенной на поверхность обмоток оксидной пленки, вместо изолирующих лаков.

Добавленный в цепь обмотки ротора трехфазный пусковой или регулировочный резистор, позволяет изменять активное сопротивление роторной цепи, способствуя уменьшению больших пусковых токов. Могут использоваться реостаты:

  • металлические проволочные или ступенчатые – с ручным или автоматическим переключением с одной ступени сопротивления на другую;
  • жидкостные, сопротивление которых регулируется глубиной погружения в электролит электродов.

Для увеличения долговечности щеток, некоторые модели фазных роторов оборудуются специальным короткозамкнутым механизмом, поднимающим после пуска двигателя щетки и замыкающим кольца.

Асинхронные двигатели с фазным ротором характеризуются более сложной конструкцией, чем с короткозамкнутым, но, в то же время, более оптимальными пусковыми и регулировочными характеристиками.

Принцип работы

Электромагниты статора расположены близко к стержням ротора и передают на них электричество для его вращения. Индуцированное в роторе магнитное поле будет следовать за магнитным полем статора, осуществляя, при этом, механическое вращение роторного вала и связанных с ним агрегатов. При этом, созданная катушками статора электромагнитная индукция, выталкивает ток на стержнях строго от себя. Значение тока в стержнях изменяется со временем.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Читайте также:  Что называют коэффициент полезного действия теплового двигателя

Источник

Ротор «беличье колесо» электродвигателя.Как это работает и устроено

В прошлой статье я рассмотрел работу асинхронного двигателя с расщепленными полюсами и у этого двигателя есть интересный ротор,у которого нет видимой обмотки и нет контактов для щеток,к этому ротору ничего не подключается.Такой ротор для асинхронных двигателей называется короткозамкнутым или «беличья клетка» или «беличье колесо».

Чтобы узнать как устроен этот ротор,вышел за дом и горелкой расплавил алюминий ротора.В итоге остался магнитопровод набранный из пластин,и в нем находятся отверстия штук двадцать под определенным углом.В эти отверстия заливают алюминий и получаются двадцать алюминиевых стержней(витки),и с двух сторон магнитопровода заливают алюминий и эти стержни тем самым замыкают.

Такой ротор вставляют в отверстие-статор в магнитопроводе двигателя.Вокруг ротора находится вращающееся магнитное поле исходящее от статора.От магнитного поля статора на этих стержнях ротора индуцируется ЭДС и ток,получается стержень с током во вращающемся магнитном поле.На эти стержни начинает действовать сила Ампера и ротор начинает вращаться вслед вращающемуся магнитному полю статора.

Сделал простой ротор из алюминиевого стакана из конденсатора.В стакане нет магнитопровода,но в алюминии будут наводиться вихревые токи от магнитного поля и стакан будет вращаться.

Далее решил сделать простейший короткозамкнутый ротор.Сердечник или магнитопровод применил из шести склеенных монет по 10 копеек.Проверил этот сердечник,будет ли он вращаться без стержней и он не вращается.

Далее поместил этот сердечник в клетку из четырех замкнутый медных стержней.Такой ротор начал вращаться и это работает.»Беличье колесо»,такое название дано из-за схожести замкнутых стержней с клеткой,в которой белки бегут и вращают колесо.

Источник

Асинхронный двигатель с короткозамкнутым ротором

Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

Конструкция

В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока. Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой. Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.

Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.

Рис. 1. Строение асинхронного двигателя с КЗ Ротором

Немного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца. В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия. К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.

Читайте также:  Чем очистить двигатель от нагара при разборке двигателя

Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.

Рис. 2. Ротор асинхронного двигателя с КЗ обмотками

Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.

Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.

В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:

Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.

Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.

В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

Принцип работы

Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем. В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы. Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

s = 100% * ( ns / n1) = 100% * (n1 — n2) / n1 , где ns частота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.

С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис. 2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения.

Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.

Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.

Читайте также:  Почему двигатель начал рычать

Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.

Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.

Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3.

Рис. 3. Кривая крутящего момента скольжения

При увеличении крутящего момента коэффициент s изменяется от 1 до 0 (см. отрезок «моторная область»). Возрастает также скорость вращения вала. Если скорость вращения вала превысит номинальную частоту, то крутящий момент станет отрицательным, а двигатель перейдёт в режим генерации (отрезок «генерирующая область»). В таком режиме ротор будет испытывать магнитное сопротивление, что приведёт к торможению мотора. Колебательный процесс будет повторяться, пока не стабилизируется крутящий момент, а скольжение не приблизится к номинальному значению.

Преимущества и недостатки

Повсеместное использование асинхронных двигателей с короткозамкнутыми роторами обусловлено их неоспоримыми преимуществами:

  • стабильностью работы на оптимальных нагрузках;
  • высокой надёжностью в эксплуатации;
  • низкие эксплуатационные затраты;
  • долговечностью функционирования без обслуживания;
  • сравнительно высокими показателями КПД;
  • невысокой стоимостью, по сравнению с моделями на основе фазных роторов и с другими типами электромоторов.

Из недостатков можно отметить:

  • высокие пусковые токи;
  • чувствительность к перепадам напряжений;
  • низкие коэффициенты скольжений;
  • необходимость в применении устройств, таких как преобразователи частоты, пусковые реостаты и др., для улучшения характеристик электромотора;
  • ЭД с короткозамкнутым ротором нуждаются в дополнительных коммутационных управляющих устройствах, в случаях, когда возникает необходимость регулировать скорость.

Электродвигатели данного типа имеют приличную механическую характеристику. Несмотря на недостатки, они лидируют по показателям их применения.

Основные технические характеристики

В зависимости от класса электродвигателя, его технические характеристики меняются. В рамках данной статьи не ставится задача приведения параметров всех существующих классов двигателей. Мы остановимся на описании основных технических характеристик для электромоторов классов 56 А2 – 80 В2.

В этом небольшом промежутке на линейке моделей эелектромоторов с короткозамкнутыми роторами можно отметить следующее:

Мощность составляет от 0,18 кВт (класс 56 А2) до 2,2 кВт (класс 80 В2).

Ток при максимальном напряжении – от 0,55 А до 5А.

КПД от 66% до 83%.

Частота вращения вала для всех моделей из указанного промежутка составляет 3000 об./мин.

Технические характеристики конкретного двигателя указаны в его паспорте.

Подключение

Статорные обмотки трёхфазного АДКР можно подключать по схеме «треугольник» либо «звезда». При этом для звёздочки требуется напряжение выше, чем для треугольника.

Обратите внимание на то, что электродвигатель, подключенный разными способами к одной и той же сети, потребляет разную мощность. Поэтому нельзя подключать электромотор, рассчитанный на схему «звезда» по принципу треугольника. Но с целью уменьшения пусковых токов можно коммутировать на время пуска контакты звезды в треугольник, но тогда уменьшится и пусковой момент.

Схемы включения понятны из рисунка 4.

Рис. 4. Схемы подключения

Для подключения трёхфазного электрического двигателя к однофазному току применяют фазосдвигающие элементы: конденсаторы, резисторы. Примеры таких подключений смотрите на рисунке 5. Можно использовать как звезду, так и треугольник.

Рис. 5. Примеры схем подключений в однофазную сеть

С целью управления работой двигателя в электрическую цепь статора подключаются дополнительные устройства.

Источник

Adblock
detector