Как работает индукционный двигатель

Содержание
  1. Однофазный электродвигатель 220 Вольт
  2. Устройство электродвигателя.
  3. Статор
  4. Ротор
  5. Про статор однофазного индукционного двигателя
  6. О роторе однофазного электродвигателя.
  7. Принцип работы двигателя
  8. Почему данный мотор не является самозапускающимся?
  9. Методы, которыми можно сделать данный электродвигатель самостартующим
  10. Сравнение однофазных и трёхфазных индукционных электродвигателей
  11. Индукционные двигатели и мотор-редукторы переменного тока
  12. Типы однофазных электродвигателей / Пусковой конденсатор с расщеплённой фазой и экранированным полюсом
  13. Индукционный электродвигатель с расщеплённой фазой
  14. Применение индукционного электродвигателя с расщеплённой фазой
  15. Индукционный электродвигатель с пусковым конденсатором и индукционный электродвигатель с двойным пусковым конденсатором
  16. Применение индукционного электродвигателя с пусковым конденсатором и индукционного электродвигателя с двойным пусковым конденсатором
  17. Электродвигатель с постоянным разделяющим конденсатором
  18. Преимущества и способы использования
  19. Индукционные однофазные электродвигатели с экранированным полюсом
  20. Участок 1:
  21. Участок 2:
  22. Участок 3:
  23. Преимущества и недостатки электродвигателя с экранированным полюсом
  24. Применение электродвигателя с экранированным полюсом

Однофазный электродвигатель 220 Вольт

Однофазная энергетическая система широко применяется по сравнению с трёхфазной для домашнего пользования, коммерческих целей и, в какой-то степени, для индустриальных задач. Однофазная система более экономична, энергетические же потребности в большинстве домов, офисов, магазинов весьма невелики. По этой причине однофазная система является очень подходящей в данном случае.

Однофазные электродвигатели просты по своей конструкции. Они недороги, прочны, их легко обслуживать и ремонтировать. Благодаря всем этим достоинствам, однофазный мотор нашёл применение в вентиляторах, пылесосах и т.д.

Данные моторы классифицируют так:

1. Однофазные индукционные двигатели или асинхронные двигатели.

2. Однофазные синхронные двигатели.

3. Коллекторные двигатели.

Устройство электродвигателя.

Как и любой электродвигатель, асинхронный мотор также имеет две главные составляющие. Этими компонентами являются ротор и статор.

Статор

Как можно догадаться из его названия, статор является стационарной частью индукционного мотора. На статор этого двигателя подаётся однофазный переменный ток.

Ротор

Ротор является вращающейся частью индукционного мотора. Ротор соединен с механической нагрузкой за счёт вала. Ротор в однофазном индукционном двигателе относится к типу роторов, который называют клетка для белки.

Конструкция данного электродвигателя почти такая же, как “клетка для белки” трёхфазного двигателя, за исключением того, что в асинхронном двигателе у статора две обмотки, по сравнению с одиночной обмоткой статора у трёхфазного индукционного мотора.

Про статор однофазного индукционного двигателя

Статор этого двигателя имеет многослойную штамповку для уменьшения потерь вихревого тока на его периферии. Слоты, предусмотренные на штамповке, предназначены для удерживания статора или основной обмотки. Для того чтобы уменьшить гистерезисные потери, штамповка сделана из кремнистой стали. Когда на обмотку статора подаётся однофазный переменный ток, образуется магнитное поле и двигатель вращается на скорости, которая несколько меньше синхронной скорости Ns, которая получается за счёт:

Где,
f = частота подающегося напряжения,
P = нормально разомкнутые полюсы мотора.

Конструкция статора асинхронного мотора похожа на конструкцию трёхфазного индукционного двигателя за исключением двух отличий в области обмотки в однофазном индукционном моторе.
1. Во-первых, однофазные индукционные моторы в большинстве своём выпускаются с катушками, имеющими не перекрещивающиеся лобовые соединения. Количество оборотов на катушку может быть легко отрегулировано при помощи катушек с не перекрещивающимися лобовыми соединениями. Распределение магнитодвижущей силы почти синусоидально.

2. За исключением двигателя с экранированным полюсом, асинхронный мотор имеет две обмотки на статоре, а именно основную и вспомогательную. Данные обмотки размещены квадратурно по отношению друг к другу.

О роторе однофазного электродвигателя.

Устройство данной составляющей этого двигателя похоже на “клетку для белки” трёхфазного индукционного мотора. Ротор имеет форму цилиндра. У данной составляющей двигателя есть слоты по всей периферии. Слоты не параллельны по отношению друг к другу, но немного скошены, так как скашивание препятствует магнитной блокировке зубов статора и ротора и делает работу индукционного мотора более гладкой и тихой.

Ротор в форме клетки для белки состоит из стержней. Эти стержни сделаны из одного из трёх металлов. Они могут быть алюминиевыми, могут быть медными, могут латунными. Данные стержни называют проводниками ротора, и они располагаются в слотах на периферии данной составляющей двигателя. Проводники перманентно замкнуты за счёт медных или алюминиевых колец, которые называют замыкающими кольцами. Для того чтобы обеспечивать механическую силу, эти проводники связаны с замыкающим кольцом, и следовательно, они формируют абсолютно замкнутую схему, напоминающую клетку. Поэтому эти двигатели и стали называть индукционными моторами-клетками для белки.

Так как стержни перманентно замкнуты при помощи замыкающих колец, электрическое сопротивление данной части мотора очень невелико, и нет возможности добавить внешнее сопротивление, поскольку стержни, как уже говорилось, перманентно замкнуты. Отсутствие контактного кольца и щёток делает устройство однофазного индукционного мотора очень простым и надёжным.

Принцип работы двигателя

ВНИМАНИЕ: Известно, что для действия любого мотора, который действует за счёт электроэнергии, будь-то мотор, использующий переменный ток или постоянный, нужно два магнитных потока. Взаимодействие между этими вот потоками обеспечивает требуемый крутящий момент, который является желаемым параметром для любого вращающегося мотора.

Когда на обмотку статора мотора приходит однофазный переменный ток, переменный ток начинает проходить через статор или основную обмотку. Этот переменный ток порождает переменный магнитный поток, который называют основным магнитным потоком.

Читайте также:  Какие должны быть свечи в бензиновом двигателе

Данный поток также соединен с проводниками ротора и следовательно, отрезает эти проводники. Согласно закону, установленному Фарадеем, об электромагнитной индукции, в роторе возникает электродвижущая сила. Поскольку схема ротора замкнута, электрический ток начинает поступать в ротор.

Этот ток зовётся электрическим током ротора. Данный ток производит собственный магнитный поток, который называют магнитным потоком ротора. Поскольку этот поток начинает производиться согласно принципу индукции, мотор, работающий на этом принципе, называется индукционным мотором. Теперь имеются два магнитных потока, один из них является основным, а другой называют магнитным потоком ротора. Эти два магнитных потока производят желаемый крутящий момент, который требуется мотору для вращения.

Почему данный мотор не является самозапускающимся?

Согласно теории, гласящей о двойном вращающемся поле, любое изменяющееся значение может быть поделено на 2 компонента. Каждый имеет магнитуду, равную половине максимальной магнитуды переменного значения. Оба данных компонента крутятся в противоположном направлении по отношению друг к другу. Например, магнитный поток, φ может быть разделён на 2 составляющие:

Каждый из этих компонентов вращается в противоположном направлении. Если один φm / 2 вращается по часовой стрелке, то другой φm / 2 вращается против. Когда однофазный переменный ток идёт на обмотку статора данного двигателя, он производит собственный магнитный поток магнитуды, φm.

В соответствии с теорией о двойном поле, которое вращается, этот переменный магнитный поток, φm разделён на 2 компонента магнитуды φm / 2. Каждый будет вращаться в противоположном направлении, с синхронной скоростью, Ns. Назовём эти 2 компонента магнитного потока как передний компонент потока, φf и задний компонент потока, φb.

Результат двух компонентов в любой момент даёт значение мгновенного магнитного потока статора в данный конкретный момент.

Теперь при старте, и передняя, и задняя составляющие магнитного потока точно являются противоположными. Также оба компонента магнитного потока равны по магнитуде. Поэтому они аннулируют друг друга, и поэтому получающийся крутящий момент у ротора на старте равен нулю. Поэтому такие вот двигатели не являются самозапускающимися.

Методы, которыми можно сделать данный электродвигатель самостартующим

Эти моторы не запускаются сами, потому что создаваемый магнитный поток статора является изменяющимся по характеру и при запуске 2 компонента этого потока аннулируют друг друга, и поэтому не появляется крутящего момента .

Решить эту проблему можно, если сделать магнитный поток статора потоком вращающегося типа, а не переменного типа, который вращается лишь в одну сторону. Тогда мотор станет самозапускающимся. Теперь, для того чтобы произвести это вращающееся магнитное поле, понадобится два переменных магнитных потока, имеющие угол фазы с некоторой разницей между ними.

Когда эти два потока взаимодействуют, они производят результирующий магнитный поток. Этот поток вращается по своей сути и вращается в пространстве только в одном направлении. Когда двигатель начнёт вращаться, дополнительный магнитный поток может быть удалён.

Мотор будет продолжать вращаться под воздействием только основного магнитного потока. В зависимости от методов превращения асинхронного электродвигателя в самозапускающийся мотор, существует в основном 4 типа однофазных индукционных моторов, а именно:

1. Индукционный электродвигатель с проскальзывающей фазой.

2. Ёмкостной электродвигатель со стартовым индуктором.

3. Емкостной индукционный электродвигатель со стартовым конденсатором.

4. Индукционный электродвигатель со экранированным полюсом.

5. Перманентный емкостной электродвигатель с проскальзыванием или ёмкостной мотор с одним значением.

Сравнение однофазных и трёхфазных индукционных электродвигателей

1. Однофазные электродвигатели надёжны, просты в устройстве, экономичны для маленькой мощности, если сравнивать с трёхфазными.

2. Электрический фактор мощности однофазных электродвигателей низок, если сравнить с трёхфазными.

3. Несмотря на одинаковые размеры, однофазные электродвигатели производят около 50% на выходе, тогда как трёхфазные – меньше.

4. Стартовый крутящий момент также низок для асинхронных моторов / однофазных индукционных моторов.

5. Эффективность однофазных электродвигателей меньше, чем у трёхфазных.

Однофазные индукционные электродвигатели просты, надёжны и дёшевы для маленьких мощностей. Они в целом доступны для мощности в 1 киловатт.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик , буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала

Источник

Индукционные двигатели и мотор-редукторы переменного тока

04 Декабря 2019

Пресс-служба Purelogic R&D

В современной промышленности крайне востребованы надежные и удобные в эксплуатации двигатели. Одним из вариантов решения этой проблемы являются индукционные электродвигатели переменного тока. По конструкции они схожи с асинхронными электродвигателями. Ток в обмотке ротора такого двигателя индуцируется вращающимся полем статора. Однако для управления АС индукционными двигателями не нужен частотный преобразователь. Двигатели питаются напрямую от сети

220 В с использованием пускового конденсатора. После подключения питания двигатель самостоятельно раскручивается и выходит на рабочий режим с параметрами, заявленными в технических характеристиках. Кроме того, существуют модели с возможностью регулирования частоты вращения ротора.

По сравнению с коллекторными электродвигателями, индукционные двигатели более надежны, поскольку в их конструкции отсутствует коллекторный узел.

Читайте также:  Сколько нужно залить масла в двигатель geely

К преимуществам индукционных двигателей относятся:

  • простая конструкция;
  • отсутствие электрического контакта с динамической частью машины;
  • долговечность;
  • низкие затраты на обслуживание;
  • высокий КПД;
  • прямой пуск от сети переменного тока 220 В.

Кроме промышленности, индукционные двигатели применяются и в быту. Например, в вытяжных вентиляторах, холодильниках, небольших насосах и т.п.

Компания Purelogic R&D предлагает широкий ассортимент индукционных электродвигателей и мотор-редукторов различных размеров и мощности (фланцы 60, 70, 80, 90 и 104 мм). Кроме этого, в каталоге компании представлены двигатели с электрическим тормозом, двигатели с реверсом и двигатели с возможностью регулирования оборотов вращения. Мотор-редукторы построены на базе индукционных электродвигателей и цилиндрических, конических или червячных редукторов.

Источник

Типы однофазных электродвигателей / Пусковой конденсатор с расщеплённой фазой и экранированным полюсом

Однофазные индукционные двигатели превращают в двигатели, способные к самозапуску, путём обеспечения дополнительного магнитного потока за счёт дополнительных средств. Сейчас, в зависимости от этих самых дополнительных средств, эти двигатели подразделяются следующим образом:

1. Индукционный электродвигатель с расщеплённой фазой.

2. Индукционный электродвигатель с пусковым конденсатором.

3. Индукционный электродвигатель с двойным пусковым конденсатором (двухзначный конденсаторный метод).

4. Электродвигатель с постоянным разделяющим конденсатором.

5. Индукционный электродвигатель с экранированным полюсом.

Индукционный электродвигатель с расщеплённой фазой

В дополнение к основной обмотке или же к двигающейся обмотке статор однофазного двигателя имеет ещё одну обмотку, которую называют вспомогательной или стартовой. Центробежный выключатель подключен последовательно к вспомогательной обмотке. Задачей этого выключателя является отключение вспомогательной обмотки от основной схемы, когда скорость электродвигателя достигнет от 75% до 80% от синхронной скорости.

Известно, что движущаяся обмотка является индукционной по своей природе. Наша задача заключается в том, чтобы создать разницу фаз между двумя обмотками. Это возможно, если стартовая обмотка имеет большое сопротивление. Допустим, что Irun является электрическим током, который проходит через основную или движущуюся обмотку, Istart является током, проходящим через стартовую обмотку, и VT является напряжением, которое подаётся.

Известно, что для обмотки с большой резистивностью электрический ток почти в фазе с напряжением, а для обмотки с большой индуктивностью ток отстает от напряжения под большим углом. Стартовая обмотка обладает большой резистивностью, поэтому электрический ток, который идёт через стартовую обмотку, отстаёт от приложенного напряжения с очень маленьким углом. Движущаяся обмотка по сути своей очень индукционная, так что ток в этой обмотке отстаёт от напряжения под большим углом.

Результатом этих двух токов является IT. Данный результат производит вращающееся магнитное поле, которое вращается только в одну сторону. В индукционном двигателе с расщепленной фазой стартовый и основной электрический ток разделены друг с другом под определённым углом, поэтому данный двигатель и получил такое называние.

Применение индукционного электродвигателя с расщеплённой фазой

У данных двигателей имеется низкий стартовый электрический ток, средний стартовый крутящий момент. По этой причине данные двигатели нашли своё применение в таких вещах как центробежные насосы, вентиляторы, стиральные машины, а также во множестве других устройств. Эти двигатели доступны в размерах в диапазоне от 1 / 20 киловатт до 1 / 2 киловатт.

Индукционный электродвигатель с пусковым конденсатором и индукционный электродвигатель с двойным пусковым конденсатором

Принцип работы и конструкция индукционного электродвигателя с пусковым конденсатором и индукционного электродвигателя с двойным пусковым конденсатором почти одинаковы. Известно, что однофазный индукционный электродвигатель не способен к запуску самого себя, поскольку магнитное поле, которое возникает в итоге, не относится к вращающемуся типу поля.

Для того чтобы производилось вращающееся магнитное поле, должна быть разница фаз. В случае с индукционным двигателем, имеющим расщеплённую фазу, использовалось сопротивление для того чтобы создать эту разницу фаз, но в данном случае для этой цели используется конденсатор.

Известен тот факт, что электрический ток, проходящий через конденсатор, приводит к возникновению напряжения. Поэтому в данных двух типах электродвигателя используются две обмотки, соответственно, основная обмотка и стартовая обмотка. К стартовой обмотке подключается конденсатор, так что электрический ток, который идёт через конденсатор, Ist приводит к напряжению под определённым углом, φst.

В силу того, что движущаяся обмотка индуктивна по натуре, электрический ток в ней отстает от напряжения под углом, φm. Теперь возникает большой угол фазы, разница между этими двумя электрическими токами, которая производит ток, I, а это уже приводит к образованию вращающегося магнитного поля.

Крутящий момент, производимый этими электродвигателями, зависит от разницы угла фазы, которая почти 90°. Поэтому эти двигатели производят очень большой стартовый крутящий момент. В случае с индукционным мотором со стартовым конденсатором, центробежный выключатель отключает стартовую обмотку, когда двигатель достигает 75-80% от синхронной скорости.

Но в случае с индукционным электродвигателем с двойным пусковым конденсатором отсутствует центробежный выключатель, поэтому конденсатор сохраняется в схеме и помогает улучшить коэффициент мощности и условия движения индукционного однофазного двигателя.

Применение индукционного электродвигателя с пусковым конденсатором и индукционного электродвигателя с двойным пусковым конденсатором

Эти двигатели имеют высокий начальный крутящий момент, поэтому их используют в конвейерах, кондиционерах воздуха, шлифовальных станках и т.д. Они доступны вплоть до 6 киловатт.

Читайте также:  Как проверить двигатель при покупке подержанного автомобиля

Электродвигатель с постоянным разделяющим конденсатором

Он имеет клеткообразный ротор и статор. У статора имеются две обмотки. Одну называют основной, а другую – вспомогательной. Имеется лишь один конденсатор, подключенный последовательно в стартовой обмотке. Стартовый выключатель отсутствует.

Преимущества и способы использования

Центробежный выключатель не нужен. Эффективность в данном случае выше, а крутящий момент достаточно мощный. Данный электродвигатель нашёл себе применение в нагнетателях воздуха в обогревателях и кондиционерах воздуха, а также в вентиляторах. Также он используется и в офисном оборудовании.

Индукционные однофазные электродвигатели с экранированным полюсом

Статор данного двигателя имеет выдающиеся или выступающие полюсы. Эти полюсы экранированы за счёт медной полосы или кольца, которые по природе своей индукционны. Полюсы в данном случае разделены на две неравные части. Более маленькая составляющая несёт медную полосу. Эту область называют экранированной областью полюса.

ДЕЙСТВИЕ: Когда однофазный ток приходит на статор, получается переменный магнитный поток. Эта перемена магнитного потока вызывает электродвижущую силу в экранированной катушке. С того момента как эта экранированная часть замкнута, электрический ток, который в ней производится, будет в таком направлении, которое будет противоположно главному магнитному потоку.

Магнитный поток в экранированном полюсе отстаёт от магнитного потока в не экранированном полюсе. Разница фаз между этими двумя потоками способствует возникновению результирующего вращающегося магнитного потока.

Известно, что электрический ток обмотки статора является переменным по природе, поэтому и магнитный поток, возникающий из-за данного тока, является переменным. Для того чтобы полностью понять то, как работает индукционный двигатель с экранированным полюсом, стоит рассмотреть три участка:

1. Когда магнитный поток меняет своё значение с нуля на почти что максимальное положительное значение.

2. Когда магнитный поток остаётся почти неизменным на своём максимальном значении.

3. Когда магнитный поток уменьшается с максимального положительного значения до нуля.

Участок 1:

На данном участке скорость возрастания магнитного потока, а значит, и электрического тока, является очень высокой. Согласно положению, выдвинутому Фарадеем, когда бы ни происходило изменение магнитного потока, электродвижущая сила всё равно будет возникать. Так как медная полоса замкнута, электрический ток начинает протекать в медной полосе, в силу вызываемой электродвижущей силы. Данный ток производит свой собственный магнитный поток.

Сейчас, согласно положению Ленца, направление этого тока таково, что оно противоположно возрастанию этого тока. Магнитный поток экранирующего кольца противоположен главному магнитному потоку, что приводит, в свою очередь, к скоплению магнитного потока в не экранированной области статора, тогда как магнитный поток в экранированной части слабеет. Такое неравномерное распределение магнитного потока вынуждает магнитную ось сдвигаться в середину не экранированной области.

Участок 2:

На данном участке скорость роста электрического тока, а следовательно, и магнитного потока остаётся практически неизменной. Поэтому электродвижущая сила, которая возникает в экранированной области, очень мала. Магнитный поток, который производится этой силой, не имеет эффекта на главный магнитный поток, и поэтому распределение магнитного потока остается равномерным, и магнитная ось лежит по центру полюса.

Участок 3:

Скорость уменьшения магнитного потока и тока очень высока. Опять же актуален закон, установленный когда-то Фарадеем, который был актуален на первом участке. Раз медная полоса замкнута, ток начинает проходить в этой полосе, в силу возникшей электродвижущей силы. Этот ток производит свой магнитный поток. Направление этого электрического тока обратно его собственному уменьшению (из положения, выдвинутого Ленцем).

Так что магнитный поток экранирующего кольца помогает главному магнитному потоку. Это приводит к скоплению магнитного потока в экранированной части статора и к ослаблению его в не экранированной области. Это неравномерное распространение потока способствуют смещению магнитной оси в середину экранированной части полюса.

Это смещение магнитной оси продлевает отрицательный цикл, а также приводит к производству вращающегося магнитного поля. Направление этого поля лежит из не экранированной части полюса в его экранированную часть.

Преимущества и недостатки электродвигателя с экранированным полюсом

Плюсы такого двигателя состоят в следующем:

1. Он очень экономичен, а также очень надёжен.

2. Конструкция проста и прочна, поскольку отсутствует центробежный выключатель.

К недостаткам такого двигателя относятся:

1. Маленький коэффициент мощности.

2. Стартовый крутящий момент очень слаб.

3. Эффективность очень низка, так как потери меди велики из-за наличия медной полосы.

4. Изменение скорости также непросто осуществить, как, впрочем, и затратно, ведь это требует другого комплекта медных коле

Применение электродвигателя с экранированным полюсом

В силу их слабых стартовых крутящих моментов и приемлемой цены, эти двигатели в основном используются в маленьких инструментах, игрушках, фенах и т.д. Двигатели такого типа обычно доступны в следующем диапазоне: от 1 / 300 до 1 / 20 киловатт.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик , буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала

Источник

Adblock
detector