Как правильно выбрать двигатель для насоса

Выбор мощности электродвигателя насосной установки

Для того чтобы выбрать тип и мощность электронасосной установки, необходимо исходя из местных условий решить вопрос о схеме водоснабжения. Подачу воды осуществляют в основном через водонапорный котел или водонапорный бак с приводом центробежных насосов от асинхронных двигателей.

Непосредственная подача воды от насоса в распределительную сеть осуществляется в открытых оросительных системах с приводом от асинхронных двигателей.

Для принятой схемы водоснабжения выбирают насос (в большинстве случаев надежный и простой в эксплуатации насос центробежного типа).

Для выбора насоса и определения его мощности по водопотреблению определяют требуемые подачу и напор.

Подачу Q н (л/ч) насоса находят из следующего соотношения:

где Qmaxч — возможный максимальный часовой расход воды, л/ч, k ч — коэффициент неравномерности часового расхода, k сут — коэффициент неравномерности суточного расхода (1,1 — 1,3), η — КПД установки, учитывающий потери воды), Q ср.сут — среднесуточный расход воды, л/сут.

Напор насоса выбирают таким, чтобы он мог подавать воду при необходимом давлении в заданную точку. Требуемый напор насоса Ннтр определяется высотой всасывания Нвс и высотой нагнетания Ннг, сумма которых определяет статический напор Нс, потерями в трубопроводах H п и разностью давлений на верхнем Рву и нижнем Рну уровнях.

Учитывая, что напор H = P/ ρg , где Р — давление, Па, ρ — плотность жидкости, кг/м3, g — 9,8 м/с2 — ускорение свободного падения, g — удельный вес жидкости, к/м3, получаем:

Ннтр = Hc + H п + (1/ ρ ) х (Рву — Рну)

Зная требуемые расход и напор, по каталогу выбирают насос подходящих параметров с учетом возможной частоты вращения приводного двигателя. Далее определяют мощность электродвигателя насоса.

По универсальной характеристике выбранного насоса уточняют его подачу Qн напор Нн и определяют коэффициент полезного действия η н и мощность насоса Рн.

Мощность (кВт) двигателя привода насоса P дв = (k з х ρ х Qн х Нн) / (ηн х ηп),

где — k з коэффициент запаса, зависящий от мощности электродвигателя насоса: Р, кВт — (1,05 — 1,7), т.к. в реальных условиях работы насосов могут происходить утечки воды из напорного трубопровода (вследствие неплотностей соединений, разрывов трубопровода и пр, поэтому электродвигатели для насосов выбирают с некоторым запасом мощности. Чем больше мощность, тем меньше коэффициент запаса можно принять. Так для мощности электродвигателя насоса 2 кВт — k з = 1,5, 3 кВт — k з = 1,33, 5 кВт — k з =1,2, при мощности больше 10 кВт — k з = 1,05 — 1,1. ηп — КПД передачи (для прямой передачи 1, клиноременной 0,98, зубчатой 0,97, плоскоременной 0,95), ηн — КПД насосов поршневых 0,7 — 0,9, центробежных 0,4 — 0,8, вихревых 0,25 — 0,5.

Для центробежных насосов особенно важен правильный выбор угловой скорости насоса, так как его производительность пропорциональна угловой скорости, напор и момент — квадрату угловой скорости, мощность — ее кубу: Q ≡ ω , H ≡ ω 2 , М ≡ ω 2 , P ≡ ω 3

Из этих соотношений следует, что при увеличении угловой скорости насоса мощность его возрастает, что может привести к перегреву электродвигателя. При занижении угловой скорости двигателя напор насоса может оказаться недостаточным для расчетной подачи.

Выбирая электронасосный агрегат по каталогу, необходимо учитывать его рабочие характеристики (рис. 1) и характеристику магистрали, на которую работает насос, то есть зависимость между подачей и суммарным значением напора, требуемого для подъема воды на заданную высоту, преодоления гидравлических сопротивлений и создания избыточного давления на выходе из нагнетательного трубопровода. Нужно стремиться к тому, чтобы рабочая точка А находилась в зоне максимальных значений КПД агрегата.

Рис. 1. Характеристики насоса при различных частотах вращения (1, 2, 3, 4), магистрали при различных степенях дросселирования (5, 6) и КПД (7) насоса при номинальной частоте вращения.

Читайте также:  Как правильно мерить давление в двигателе

Тип электродвигателя выбирают, исходя из условии окружающей среды и особенностей монтажа. Например, для привода погружных насосов типа ЭЦВ применяют электродвигатели мощностью 0,7 — 65 кВт специального исполнения типа ПЭДВ, рассчитанные для работы в буровых скважинах диаметром от 100 до 250 мм с подачей на высоту до 350 м. Обмотка статора двигателя выполнена проводом с полихлорвиниловой влагостойкой изоляцией.

Электродвигатель вместе с насосом устанавливается в скважине погруженным в откачиваемую воду (рис. 3). Пример условного обозначения агрегата: ЭЦВ-6-10-80-М, где ЭЦВ-6 — электронасосный скважинный агрегат для воды с характеристикой «6» по диаметру скважины, а именно — для скважины с внутренним диаметром 149,5 мм, 10 — номинальная подача насоса, м3/ч, 80 — номинальный напор, м, М — вид климатического исполнения по ГОСТ 15150-69.

Условное обозначение электродвигателя, применяемого в агрегате: ПЭДВ4-144 (ПЭДВ — погружной электродвигатель водозаполненный, 4 — номинальная мощность, кВт, 144 — максимальный размер в поперечном сечении, мм).

Рис. 2. Электронасосный центробежный скважинный агрегат для воды: 1 — насос, 2 — обойма, 3 — головка, 4 — обратный клапан, 5 — рабочее колесо, 6 — лопаточный отвод, 7 — муфта, 8 — двигатель, 9 — верхний подшипниковый щит, 10 — статор, 11 — ротор, 12 — нижний подшипниковый щит, 13 — днище, 14 — пробка, 15 — пробка-фильтр, 16 — шпилька, 17 — сетка, 18 — кожух

Рис. 3. Схема расположения агрегата в скважине: 1 — агрегат, 2 — водоподъемная колона, 3 — датчик «сухого хода», 4 — кабель, 5 — муфта, 6 — опорная плита или оголовок, 7 — колено, 8 — кран трехходовой, 9 — манометр, 10 — задвижка, 11 — станция управления и защиты, 12 — хомут, 13 — фильтр

В приводе непогружных центробежных и вихревых насосов используют асинхронные короткозамкнутые двигатели я и двигатели с фазным ротором с влагостойкой изоляцией мощностью 1,5 — 55 кВт.

Погружные электронасосы в зависимости от уровня залегания водоносного слоя эксплуатируют на глубинах 40 — 230 м.

Механическая характеристика центробежного насоса имеет вентиляторный вид. Момент сопротивления трения в подшипниках насоса Мс — 0,05 Мн.

Средний момент поршневого насоса при работе на магистраль, где поддерживается постоянный напор, не зависит от угловой скорости вращения. Пуск поршневого насоса осуществляется при открытой задвижке на напорном трубопроводе. Иначе может произойти авария.

Центробежный насос можно пускать как при открытой, так и при закрытой задвижке на напорном трубопроводе.

С учетом условий окружающей среды, особенностей монтажа, необходимой мощности и частоты вращения насоса по справочным таблицам выбирают электродвигатель соответствующего типа.

Источник

Как правильно подобрать электродвигатель по типу, мощности и другим параметрам

Электродвигатель — механизм, преобразующий энергию электрического тока в кинетическую энергию. Современное производство и быт сложно представить без машин с электроприводом. Они используются в насосном оборудовании, системах вентиляции и кондиционирования, в электротранспорте, промышленных станках различных типов и т.д.

При выборе электродвигателя необходимо руководствоваться несколькими основными критериями:

  • вид электрического тока, питающего оборудование;
  • мощность электродвигателя;
  • режим работы;
  • климатические условия и другие внешние факторы.

Типы двигателей

Электродвигатели постоянного и переменного тока

В зависимости от используемого электрического тока двигатели делятся на две группы:

  • приводы постоянного тока;
  • приводы переменного тока.

Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.

Главный недостаток электродвигателей постоянного тока — возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.

Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.

Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.

Читайте также:  Инструменты для чип тюнинга двигателя

Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.

Синхронные электродвигатели

Синхронные двигатели — оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.

Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.

В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.

Асинхронные электродвигатели

Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.

КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок — до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.

Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:

  • Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
  • При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
  • В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.

Вентильные электродвигатели

Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.

К преимуществам данного оборудования относятся:

  • Высокий эксплуатационный ресурс.
  • Простота обслуживания за счет бесконтактного управления.
  • Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
  • Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
  • Высокий КПД при любой нагрузке – более 90 процентов.
  • Небольшие габариты.
  • Быстрая окупаемость.

Мощность электродвигателя

В режиме постоянной или незначительно изменяющейся нагрузки работает большое количество механизмов: вентиляторы, компрессоры, насосы, другая техника. При выборе электродвигателя необходимо ориентироваться на потребляемую оборудованием мощность.

Определить мощность можно расчетным путем, используя формулы и коэффициенты, приведенные ниже.

Мощность на валу электродвигателя определяется по следующей формуле:

где:
Рм — потребляемая механизмом мощность;
ηп — КПД передачи.

Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

Формула расчета мощности электродвигателя для насоса

где:
K3 — коэффициента запаса, он равен 1,1-1,3;
g — ускорение свободного падения;
Q — производительность насоса;
H — высота подъема (расчетная);
Y — плотность перекачиваемой насосом жидкости;
ηнас — КПД насоса;
ηп — КПД передачи.

Давление насоса рассчитывается по формуле:

Формула расчета мощности электродвигателя для компрессора

Мощность поршневого компрессора легко рассчитать по следующей формуле:

где:
Q — производительность компрессора;
ηk — индикаторный КПД поршневого компрессора (0,6-0,8);
ηп — КПД передачи (0,9-0,95);
K3 — коэффициент запаса (1,05 -1,15).

Значение A можно рассчитать по формуле:

или взять из таблицы

Формула расчета мощности электродвигателя для вентиляторов

где:
K3 — коэффициент запаса.
Его значения зависят от мощности двигателя:

  • до 1 кВт — коэффициент 2;
  • от 1 до 2 кВт — коэффициент 1,5;
  • 5 и более кВт — коэффициент 1,1-1,2.

Q — производительность вентилятора;
H — давление на выходе;
ηв — КПД вентилятора;
ηп — КПД передачи.

Приведенная формула используется для расчета мощности осевых и центробежных вентиляторов. КПД центробежных моделей равен 0,4-0,7, а осевых вентиляторов — 0,5-0,85.

Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов.

Важно! При выборе электродвигателя запас мощности должен быть, но небольшой. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.

Читайте также:  Неисправности мотоблока ока с двигателем лифан

Пусковой ток электродвигателя

Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.

Номинальный ток электродвигателей постоянного тока

Номинальный ток трехфазных электродвигателей переменного тока

где:
PH — номинальная мощность электродвигателя;
UH — номинальное напряжение электродвигателя,
ηH — КПД электродвигателя;
cos φ H — коэффициент мощности электродвигателя.

Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.

Зная значение номинального тока, можно рассчитать пусковой ток.

Формула расчета пускового тока электродвигателей

где:
IH — номинальное значение тока;
Кп — кратность постоянного тока к номинальному значению.

Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.

Режимы работы электродвигателей

Режим работы определяет нагрузку на электродвигатель. В некоторых случаях она остается практически неизменной, в других может изменяться. Характер предполагаемой нагрузки обязательно учитывается при выборе двигателя. Действующими стандартами предусмотрены следующие режимы эксплуатации:

Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.

Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.

Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями. В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.

Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.

Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.

Режим S7 (периодически-непрерывный с электрическим торможением)

Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)

Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)

Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.

Климатические исполнения электродвигателей

При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.

Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:

  • У — модели для эксплуатации в умеренном климате;
  • ХЛ — электродвигатели, адаптированные к холодному климату;
  • ТС — исполнения для сухого тропического климата;
  • ТВ — исполнения для влажного тропического климата;
  • Т — универсальные исполнения для тропического климата;
  • О — электродвигатели для эксплуатации на суше;
  • М — двигатели для работы в морском климате (холодном и умеренном);
  • В — модели, которые могут использоваться в любых зонах на суше и на море.

Цифры в номенклатуре модели указывают на тип ее размещения:

  • 1 — возможность эксплуатации на открытых площадках;
  • 2 — установка в помещениях со свободным доступом воздуха;
  • 3 — эксплуатация в закрытых цехах и помещениях;
  • 4 — использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
  • 5 — исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.

Энергоэффективность

Рациональное потребление энергии при сохраняющейся высокой мощности сокращает текущие производственные затраты при одновременном увеличении производительности электродвигателя. Поэтому при выборе привода обязательно учитывается класс энергоэффективности.

В технической документации и каталогах обязательно указывается класс энергоэффективности двигателя. Он зависит от показателя КПД.

Проводимые в тестовом и рабочем режимах экспериментальные исследования показывают, что электродвигатель мощностью 55 кВт высокого класса энергоэффективности сокращает потребление электроэнергии на 8-10 тысяч кВт ежегодно.

Источник: Компания «Техпривод»

Источник

Adblock
detector