Как подключить вентильный двигатель

Элементы теории вентильного привода

Определение вентильного двигателя

Обозначение в зарубежной литературе

Конструкция

Статор

Ротор

В зависимости от количества магнитов, расположенных в поперечном сечении ротора двигатель будет иметь то или иное количество полюсов.

В погружных вентильных электродвигателях используемых в нефтяной отрасли ротор содержит постоянные магниты. Как правило погружные ВД выпускаются 8-ми и 4-х полюсными.

При одной и той же частоте вращения электромагнитного поля статора, частота вращения вентильного электродвигателя с большим количеством пар полюсов будет меньше. Так, если скорость вращения 8-ми полюсного электродвигателя 1500 об/мин, то 4-х полюсный при той же частоте поля будет вращаться с частотой 3000 об/мин.

Принцип работы

Принцип работы вентильного электродвигателя

Здесь, одно из ключевых отличий вентильного (синхронного) и асинхронного двигателей.

Принцип работы асинхронного электродвигателя

Его ротор представляет собой обмотку с короткозамкнутыми витками , по виду напоминающую беличью клетку прутья которой — стержни с торцов соединенные кольцами.

Вращающееся электромагнитное поле статора наводит в роторе ЭДС, в стержнях ротора начинает течь ток, в результате чего возникает магнитное поле, которое и заставляет вращаться ротор вслед за магнитным полем, создаваемым статором. Именно то, что поле статора движется относительно ротора является условием возникновения электромагнитного поля в роторе. Если ротор заставить вращаться с той же скоростью, что и магнитное поле, создаваемое статором, то ЭДС в роторе наводится не будет! Таким образом скорость вращения ротора асинхронного двигателя всегда меньше скорости вращения поля.

Синхронный же двигатель не требует возбуждения ЭДС ротора от магнитного поля, создаваемого статором, магнитное поле здесь уже присутствует без его участия. Поэтому ротор синхронного электродвигателе вращается строго с частотой поля, создаваемого обмотками статора. Если установить частоту вращения синхронного двигателя равной 3000 об/мин, то это значит, что и магнитное поле двигателя, создаваемого обмотками статора равна 3000 об/мин. Частота вращения асинхронного двигателя в тех же условиях будет 2910 об/мин.

Система управления вентильным электродвигателем

Инвертором в данном случае называют электронную систему, осуществляющую подачу напряжения, частота которого не зависит от частоты питающего напряжения на обмотки электродвигателя.

Инвертором оснащаются не только синхронные (вентильные) электродвигатели, но асинхронные — там где требуется регулирование частоты вращения.

Существуют два основных подхода (принципа) в управлении вентильными электродвигателями:

  • 1. Управления коммутацией (6-ти пульсное управление);
  • 2. Векторное управление.

Управление коммутацией

И еще раз обратим ваше внимание! Не частота вращения ротора изменяется от частоты вращения поля, а поле подстраивается под частоту вращения ротора. Инвертор регулирует частоту вращения ротора изменяя ток и/или напряжение коммутируемое к обмоткам.

Определение положения ротора

Для определения положения ротора существуют различные методы:

  • при помощи датчиков (например датчика Холла);
  • бездатчиковый.

В погружных вентильных электродвигателях используется бездатчиковый метод определения положения ротора, т.к. применение датчиков в данном случае невозможно в силу специфики эксплуатации.

В бездатчиковом методе при вращении двигателя определение положение ротора осуществляется по значению ЭДС, наводимой в свободной фазе (к которой в данной момент не подводится питающее напряжение) обмотки статора. При движении ротора ЭДС в свободной фазе меняется и переход ее через 0 является «отметкой» положения ротора.

При таком методе управления в обмотках статора течет ток по форме близкий к трапецеидальному.

Данный способ управления характеризует простота и надежность, что позволяет управлять вентильным электродвигателем не только на коротких расстояниях, но и на длинных линиях — сотни метров и даже километры, что актуально для нефтяного погружного оборудования.

Векторное управление

Метод позволяет очень точно управлять электродвигателем. Метод наиболее ресурсоемкий в плане математических вычислений, однако развитие микропроцессорной техники позволяет компенсировать это. Применение его на коротких линиях очень эффективно, однако использование на длинных линиях ставит перед разработчиками множество преград, решение которых — нетривиальная задача.

Читайте также:  Вакуумные схемы двигателей 402

Источник

Управление вентильным электродвигателем

Слово «вентильный» в названии двигателя происходит от слова «вентиль», обозначающего полупроводниковый ключ. Таким образом, привод в принципе можно назвать вентильным, если режим его работы регулируется специальным преобразователем на управляемых полупроводниковых ключах.

Непосредственно вентильный привод представляет собой электромеханическую систему, состоящую из синхронной машины с постоянными магнитами на роторе и электронного коммутатора (при помощи которого питаются обмотки статора) с системой автоматического управления на базе датчиков.

В тех многочисленных областях техники, где раньше традиционно устанавливали асинхронные двигатели или машины постоянного тока, сегодня часто можно встретить именно вентильные двигатели, поскольку магнитные материалы дешевеют, а база силовой полупроводниковой электроники и систем управления очень быстро развивается.

Синхронные двигатели с постоянными магнитами на роторе отличаются рядом преимуществ:

нет щеточно-коллекторного узла, поэтому ресурс двигателя больше, а надежность его выше, чем у машин со скользящими контактами, к тому же диапазон рабочих скоростей выше;

широкий диапазон питающих напряжений обмоток; допускается значительная перегрузка по моменту — более 5 раз;

высокая динамика момента;

возможна регулировка скорости с сохранением момента на низких скоростях или с сохранением мощности на высоких скоростях;

минимальные потери на холостом ходу;

небольшие массогабаритные характеристики.

Магниты состава «неодим-железо-бор» вполне способны создавать индукцию в зазоре порядка 0,8 Тл, то есть на уровне асинхронных машин, причем основные электромагнитные потери в таком роторе отсутствуют. Значит линейная нагрузка на ротор может быть повышена без повышения общих потерь.

Этим и обуславливается более высокая электромеханическая эффективность вентильных двигателей по сравнению с другими бесколлекторными машинами, например с асинхронными двигателями. По этой же причине вентильные двигатели занимают сегодня достойное место в каталогах ведущих зарубежных и отечественных производителей.

Управление ключами инвертора вентильного электродвигателя традиционно выполняется в функции положения его ротора. Высокие эксплуатационные характеристики, достигаемые таким образом, делают вентильный привод весьма перспективным в диапазоне малых и средних мощностей для систем автоматики, станков, роботов, манипуляторов, координатных устройств, линий обработки и сборки, систем наведения и слежения, для авиации, медицины, транспорта и т.д.

В частности, выпускаются тяговые дисковые вентильные двигатели мощностью более 100 кВт для городского электротранспорта. Здесь применяются магниты «неодим-железо-бор» с легирующими добавками, увеличивающими коэрцитивную силу и повышающими рабочую температуру магнитов до 170°С, чтобы мотор мог легко выдерживать кратковременные пятикратные перегрузки по току и по моменту.

Приводы рулевого управления подводных, наземных и летательных аппаратов, мотор-колеса, стиральные машины — много где сегодня находят полезное применение вентильные двигатели.

Вентильные двигатели бывают двух видов: постоянного тока (BLDC — brushless DC) и переменного тока (PMAC — permanent magnet AC). В двигателях постоянного тока трапециевидная ЭДС вращения в обмотках обусловлена расположением магнитов ротора и обмоток статора. В двигателях переменного тока ЭДС вращения синусоидальная. В рамках данной статьи мы поговорим об управлении вентильными двигателями очень распространенного вида — BLDC (постоянного тока).

Вентильный двигатель постоянного тока и принцип управления им BLDC моторы отличает наличие полупроводникового коммутатора, выступающего вместо щеточно-коллекторного узла, свойственного машинам постоянного тока с обмоткой на статоре и с магнитным ротором.

Переключение коммутатора вентильного мотора происходит в зависимости от текущего положения ротора (в функции положения ротора). Чаще всего обмотка статора трехфазная, такая же как у асинхронного двигателя с соединением звездой, а конструкция ротора с постоянными магнитами может быть различной.

Движущий момент в BLDC образуется в результате взаимодействия магнитных потоков статора и ротора: магнитный поток статора все время стремится как бы развернуть ротор в такое положение, чтобы магнитный поток установленных на нем постоянных магнитов совпал по направлению с магнитным потоком статора.

Читайте также:  Схемы регуляторов 3х фазных двигателей

Аналогичным образом магнитное поле Земли ориентирует стрелку компаса — оно разворачивает ее «по полю». Датчик положения ротора позволяет сохранить угол между потоками постоянным на уровне 90±30°, в таком положении вращающий момент оказывается максимальным.

Полупроводниковый коммутатор для питания обмоток статора BLDC – это управляемый полупроводниковый преобразователь с жестким алгоритмом 120° коммутации напряжений или токов трех рабочих фаз.

Пример функциональной схемы силовой части преобразователя с возможностью генераторного торможения приведен на рисунке выше. Здесь инвертор с амплитудно-импульсной модуляцией выхода выполнен на IGBT-транзисторах, причем амплитуда регулируется благодаря широтно-импульсной модуляции на промежуточном звене постоянного тока.

Вообще для данной цели используются: тиристорные преобразователи частоты с автономным инвертором напряжения или тока с управлением по питанию и транзисторные преобразователи частоты с автономным инвертором напряжения с управлением в режиме ШИМ или с релейным регулированием тока на выходе.

В итоге электромеханические характеристики двигателя получаются аналогичными традиционным машинам постоянного тока с магнитоэлектрическим или независимым возбуждением, потому системы управления BLDC и строятся по классическому принципу подчиненного регулирования координат привода постоянного тока с контурами частоты вращения ротора и тока статора.

В качестве датчика для правильной работы коммутатора может применяться емкостной либо индуктивный дискретный сенсор, согласованный с мотором по полюсам, или система на базе датчиков Холла с постоянными магнитами.

Так или иначе, наличие датчика часто усложняет конструкцию машины в целом, к тому же в некоторых применениях датчик положения ротора вообще невозможно установить. Поэтому нередко на практике прибегают к использованию «бездатчиковых» систем управления. Алгоритм «бездатчикового» управления (sensorless) основывается на анализе данных прямо с клемм преобразователя и текущей частоты ротора или питания.

Наиболее популярный «бездатчиковый» алгоритм основан на вычислении ЭДС для одной из отключенных от питания в данный момент фаз двигателя. Фиксируется переход ЭДС отключенной фазы через ноль, определяется сдвиг в 90°, вычисляется момент времени, на который должна прийтись середина следующего токового импульса. Преимущество этого способа заключается в его простоте, однако есть и недостатки: на малых скоростях определить момент перехода через ноль достаточно непросто; задержка окажется точной только при постоянной скорости вращения.

Между тем, для более точного управления применяют усложненные методы оценки положения ротора: по потокосцеплению фаз, по третьей гармонике ЭДС на обмотках, по изменениям индуктивностей фазных обмоток.

Рассмотрим пример с наблюдением за потокосцеплениями. Известно, что пульсации момента BLDC при питании двигателя прямоугольными импульсами напряжения, достигают 25%, что приводит к неравномерности вращения, создает ограничение для регулировки скорости снизу. Поэтому в фазах статора при помощи замкнутых контуров регулирования формируются токи близкие по форме к прямоугольным.

Источник

Вентильные двигатели. Виды и устройство. Работа и применение

Электродвигатели, работающие от постоянного тока, обычно обладают более высокими экономическими и техническими характеристиками, по сравнению с двигателями переменного тока. Единственным серьезным недостатком является наличие щеточного механизма, существенно понижающего надежность всей конструкции, повышающего инерционность ротора, взрывоопасность двигателя, а также создает радиопомехи.

Поэтому были созданы бесконтактные двигатели, работающие от постоянного тока, которые получили название вентильные двигатели. Создание такого нового устройства стало возможным, благодаря появлению полупроводников. Щеточный механизм в этой конструкции заменен коммутатором на основе полупроводниковых элементов. Якорь является неподвижным элементом, а на роторе закреплены постоянные магниты.

В целом вентильные двигатели включают в себя три подсистемы:
  1. Электронную.
  2. Механическую.
  3. Электрическую.

В результате получается мехатронное устройство, которое позволяет сделать корпус более компактным, избавиться от дополнительных деталей, лишних преобразователей, а соответственно сделать весь привод механизма более надежным.

Устройство и работа

Вентильный электродвигатель представляет собой измененный вариант коллекторного мотора постоянного тока. Мотор имеет индуктор, расположенный на роторе, обмотка якоря находится на статоре. Электричество подается управляющими командами на статорные обмотки, в зависимости от угла поворота ротора, который определяется встроенными датчиками Холла.

Ротор

Основу этого элемента составляет многополюсный постоянный магнит, который может иметь разное количество пар полюсов (от 2 до 8), с чередованием полюсов. Поначалу для производства роторов применяли ферритовые магниты невысокой стоимости. Однако ферритовые магниты имеют недостаток в том, что у них низкое значение магнитной индукции.

Читайте также:  Как определить гидроудара двигателя

Современные конструкции роторов оснащают магнитами, изготовленными из редкоземельных элементов. Они дают возможность получить большую магнитную индукцию, а также сделать ротор более компактным.

Статор

Вентильный электродвигатель обычно имеет статор, состоящий из 3-х обмоток, соединенных «звездой» без отвода от средней точки, и внешне похожий на статор асинхронного мотора. Существуют вентильные двигатели со статором с большим количеством обмоток, а кроме схемы «звезды» их могут соединять «треугольником». Трехфазная структура обмоток считается наиболее эффективной при наименьшем количестве обмоток.

Если сравнивать две рассмотренные схемы соединения, то схема «звезды» предполагает больший момент вращения и меньшие показатели противо-ЭДС, в отличие от схемы «треугольника». Поэтому «звезду» чаще всего применяют для получения больших крутящих моментов, а «треугольник» — больших скоростей вращения.

Датчики положения и термодатчик

Этот чувствительный элемент создает обратную связь, и определяет положение ротора. Такие датчики могут работать по разным принципам – эффекта Холла, фотоэлектрическому и т.д. Большое распространение получили фотоэлектрические и датчики Холла. Они не имеют инерционности и дают возможность работы без запаздывания при определении положения ротора.

Фотоэлектрический датчик в его стандартном виде имеет три стационарных фотоприемника. Они по очереди закрываются шторкой, которая крутится синхронно ротору. Двоичный код, поступающий от датчиков, фиксирует шесть разных положений ротора. Управляющее устройство преобразует сигналы датчиков в управляющие импульсы напряжений, которые в свою очередь управляют полупроводниковыми ключами.

В каждый рабочий такт мотора включены два силовых ключа, и к электроэнергии подключены две обмотки из трех. Якорные обмотки расположены со сдвигом 120 градусов, и соединены между собой так, что при управлении силовыми ключами образуется вращающееся магнитное поле.

Дополнительно в вентильном двигателе могут иметься термодатчик, тормозной механизм. Тахогенератор используется в случае работы мотора в режиме стабилизации скорости с большой точностью.

Термодатчик служит для предохранения обмоток от перегрева, и включает в себя несколько позисторов, соединенных друг с другом между собой последовательно. Позисторы – резисторы, сопротивление которых зависит от температуры, чем больше температура, тем выше их сопротивление.

Принцип действия

Контроллер вентильного двигателя подключает обмотки статора так, что направление магнитного поля статора всегда перпендикулярно направлению поля ротора. Благодаря широтно-импульсной модуляции контроллер управляет током, который проходит по обмоткам. В результате создается момент вращения ротора, который регулируется.

Виды
Вентильные двигатели бывают постоянного и переменного тока. Кроме того, их разделяют на виды по числу фаз:
  • Однофазные . Это наиболее простая конструкция вентильных двигателей с минимальным числом связей между электронной системой и мотором. К недостаткам однофазных двигателей относятся большие пульсации, невозможность пуска при некоторых положениях ротора. Однофазные моторы широко используются в механизмах, где необходима высокая скорость работы.
  • Двухфазные . Такие вентильные двигатели работают в механизмах, где обязательно наличие связи обмотки и статора. К недостаткам можно отнести большой момент вращения и сильные пульсации, способные привести к отрицательным последствиям.
  • Трехфазные . Эта дисковая конструкция мотора применяется для создания момента вращения, не применяя для этого большое число фаз. Этот вид моторов используется во многих отраслях промышленности, а также в бытовых условиях. Это наиболее распространенная конструкция, по сравнению с другими. Трехфазные двигатели вентильного типа, имеющие четное количество полюсов, стали хорошим вариантом для устройств, где требуется сочетание небольшой скорости и высокой мощности. Недостатками 3-фазных вентильных моторов является высокий уровень шума.
  • 4-фазные . У таких двигателей значительно уменьшен момент вращения и пульсаций. Используются они достаточно редко, так как они имеют высокую стоимость.

Вентильные двигатели применяются во многих областях производства, например, на буровых установках, в системах охлаждения на химических заводах, на нефтяных скважинах.

Источник

Adblock
detector